The Influence of Gamma Radiation on the Glass Transition of Hydroxyapatite/Poly L-Lactide Composite

Article Preview

Abstract:

Hydroxyapatite/poly L-lactide (HAp/PLLA) is a composite biomaterial which has been widely utilized for substitution and reparation of the hard bone tissue. It is well known that gamma irradiation has been successfully employed in the modification/sterilization of such porous composites and that it has advantages over other procedures. In this study, differential scanning calorimetry (DSC) measurements were made to investigate the influence of the radiation on glass transition behavior and structural relaxation, as well as to estimate the activation energy for this process. The apparent activation energy ΔH* for structural relaxation in the glass transition region was determined on the basis of the heating rate dependence of the glass transition temperature Tg. Furthermore, the results were correlated with those obtained by gel permeation chromatography (GPC). Our findings support the fact that the radiation-induced chain scission in the PLLA phase is the main reason for the decrease of the glass transition temperature and/or activation energy with the absorbed dose.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

497-502

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Shikinami, Y. Matsusue and T. Namura: Biomaterials Vol. 26 (2005), p.5542.

Google Scholar

[2] S.N. Nazhat, M. Kellomaki, P. Tormala, K.E. Tanner and W. Bonfield: J. Biomed. Mat. Res. B Vol. 58 (2001), p.335.

Google Scholar

[3] C. Albano, A. Karam. R. Perera, G. Gonzales, N. Dominguez, J. Gonzalez and Y. Sanchez: Nucl. Inst. Meth. in Phys. Res. B Vol. 247 (2006), p.331.

Google Scholar

[4] C.C.P.M. Verheyen, J.R. de Wijn, C.A. van Blitterswijk, K. de Groot and P.M. Rozing: J. Biomed. Mat. Res. Vol. 27 (1993), p.433.

Google Scholar

[5] N.A. Weir, F.J. Buchanan, J.F. Orra, D.F. Farrar and A. Boyd: Biomaterials Vol. 25 (2004), p.3939.

Google Scholar

[6] J. Black: Biological performance of materials: fundamentals of biocompatibility (Marcel Dekker, New York 1992), p.21.

Google Scholar

[7] J.B. Park and R.S. Lakes: Biomaterials: an introduction (Plenum Press, New York 1992), p.162.

Google Scholar

[8] K. Isama and T. Tsuchiya: J. Biomat. Sci.: Polymer Edition Vol. 13 (2002), p.153.

Google Scholar

[9] S. Loo, C. Ooi and Y. Boey: Biomaterials Vol. 26 (2005), p.1359.

Google Scholar

[10] M.B. Sintzel, A. Merkli, C. Tabatabay and R. Gurny: Drug Development and Industrial Pharmacy Vol. 23 (1997), p.857.

DOI: 10.3109/03639049709148693

Google Scholar

[11] E. Suljovrujić, N. Ignjatović, D. Uskoković, M. Mitrić, M. Mitrović and S. Tomić: Radiation Physics and Chemistry (in press 2006).

DOI: 10.1016/j.radphyschem.2006.02.013

Google Scholar

[12] A. Singh and J. Silverman: Radiation Processing of Polymers (Hanser Publishers, Munich 1991), p.9.

Google Scholar

[13] E. Suljovrujic, N. Ignjatovic and D. Uskokovic: Radiation Phys. Chem. Vol. 67 (2003), p.375.

Google Scholar

[14] I.M. Hodge: J. Non-Crystalline Solids Vol. 169 (1994), p.211.

Google Scholar

[15] N. Ignjatovic, E. Suljovrujic, J. Budimski-Simendic, I. Krakovsky and D. Uskokovic: J. Biomed. Mat. Res. B Vol. 71B (2004), p.284.

DOI: 10.1002/jbm.b.30093

Google Scholar

[16] J.F. Mano, J.L. Gomez Ribelles, N.M. Alves and M. Salmeron Sanchez: Polymer Vol. 46 (2005), p.8258.

Google Scholar

[17] L. Montanari, M. Costantini, E.C. Signoretti, L. Valvo, M. Santucci, M. Bartolomei, P. Fattibene, S. Onori, A. Faucitano, B. Conti and I. Genta: J. Controlled Release Vol. 56 (1998), p.219.

DOI: 10.1016/s0168-3659(98)00082-0

Google Scholar

[18] J. Nijsen, A. van het Ship, M. van Steenbergen, S. Zielhuis, L. Kroon-Batenburg, M. van de Weert, P. van Rijk and W. Hennink: Biomaterials Vol. 22 (2001), p.3073.

DOI: 10.1016/s0142-9612(01)00055-2

Google Scholar

[19] J.F. Rabek: Experimental methods in polymer chemistry (John Wiley & Sons, New York 1980).

Google Scholar

[20] C.T. Moynihan, A.J. Easteal, J. Wilder and J. Tucker: J. Phys. Chem. Vol. 78(26) (1974), p.2673.

Google Scholar

[21] C.T. Moynihan, S. -K. Lee, M. Tatsumisaga and T. Minami: Thermochim. Acta Vol. 280/281 (1996), p.153.

Google Scholar

[22] V.P. Privalko, S.S. Demchenko and Y.S. Lipatov: Macromolecules Vol. 19 (1986), p.901.

Google Scholar

[23] M.E. Godard and J.M. Saiter: J. Non-Crystalline Solids Vol. 235-237 (1998), p.635.

Google Scholar

[24] M. Grimau, E. Laredo, M.C. Perez and A. Bello: J. Chem. Phys. 114(14) (2001), p.6417.

Google Scholar