[1]
S. W. Doebling, C. R. Farrar & M. B. Prime: A summary review of vibration-based damage identification methods (The Shock and Vibration Digest, Vol. 30, No 2, March 1998, pp.91-105).
DOI: 10.1177/058310249803000201
Google Scholar
[2]
O. S. Salawu: Detection damage through changes in frequency: a review (Eng. Struct. 19(9), pp.718-723).
Google Scholar
[3]
A. S. Purekar & D. J. Pines: Detecting damage in non-uniform beams using the dereverberated transfer function response (Smart Mater. Struct. 9 (2000) pp.429-444).
DOI: 10.1088/0964-1726/9/4/306
Google Scholar
[4]
P. F. Rizos, N. Aspragathos & A. D. Dimarogonas: Identification of crack location and magnitude in a cantilever beam from the vibration modes (Journal of Sound and Vibration (1990) 138(3), pp.381-388).
DOI: 10.1016/0022-460x(90)90593-o
Google Scholar
[5]
A. Dimarogonas & S. Paitetis: Analytical methods in rotor dynamics (Elsevier Applied Sciences, London, 1983).
Google Scholar
[6]
J. D. Renton: A check of the accuracy of Timoshenko's beam theory (Journal of Sound and Vibration (2001) 245(3), pp.559-561).
DOI: 10.1006/jsvi.2000.3540
Google Scholar
[7]
B. R. Mace: Wave reflection and transmission in beams (Journal of Sound and Vibration (1983) 97(2), pp.237-246).
Google Scholar
[8]
C. R. Halkyard & B. R. Mace: Feedforward adaptative control of flexural vibration in a beam using wave amplitudes (Journal of Sound and Vibration (2002) 254(1), pp.117-141).
DOI: 10.1006/jsvi.2001.4089
Google Scholar
[9]
K. F. Graff: Wave motion in elastic solids (Clarendon Press, Oxford 1975, pp.140-209).
Google Scholar
[10]
W. H. Press, S. A. Teukolsky, W. T. Vetterling & B. P. Flannery: Convolution and deconvolution using the FFT (In Numerical Recipes in C, The art of scientific computing, pp.538-545.
DOI: 10.1086/416228
Google Scholar