Paper Title:
The Use of Fibre Optic Sensors for Damage Detection and Location in Structural Materials
  Abstract

The measurement of changes in the properties of ultrasonic Lamb waves propagating through structural material has frequently been proposed as a method for the detection of damage. In this paper we describe work that uses optical fibre sensors to detect the Lamb waves and show that the directional properties of these sensors allow us to not only detect damage, but also to locate it. We look at two types of optical fibre sensor, a polarimetric sensor and the fibre Bragg grating. The polarimetric sensor measures the change in birefringence of a fibre caused by the pressure wave of the ultrasound acting upon it. This is an integrated sensor since the fibre length bonded to the sample needs to be greater than the ultrasonic wavelength in order to obtain the required sensitivity. The maximum sensitivity of this sensor is when the fibre is positioned normal to the direction of wave propagation. Fibre Bragg gratings are essentially point sensors since the grating length needs to be a fraction of the ultrasound wavelength to obtain maximum sensitivity. Ultrasound is detected mainly through the in-plane strain it produces and maximum sensitivity is therefore produced when the grating is aligned parallel to the direction of wave propagation. Holes drilled into sample plates can be detected using both type of sensor by examining the changes in either the transmitted Lamb wave or through detection of the reflections produced by the hole. The sensitivity of the technique is shown to be determined by the relative positions of the acoustic source, the hole and the sensor. If we use fibre Bragg gratings in a rosette configuration (i.e. 3 gratings forming an equilateral triangle) then the direction of the Lamb wave can be determined using the directional sensitivities of the gratings. Using two such rosettes allows us to calculate the source of the wave from the intersection of two of these directions. If the source of the wave is the hole (which acts as a passive source), then the location of that hole can be determined.

  Info
Periodical
Edited by
M. Lucas
Pages
191-196
DOI
10.4028/www.scientific.net/AMM.1-2.191
Citation
G. Thursby, B. Sorazu, D. Betz, M. Staszewski, B. Culshaw, "The Use of Fibre Optic Sensors for Damage Detection and Location in Structural Materials", Applied Mechanics and Materials, Vols. 1-2, pp. 191-196, 2004
Online since
September 2004
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jae Young Nam, S.H. Choi, Jae Boong Choi, Young Jin Kim
Abstract:Even though an excavation is not under the direct control of the utility operators, it is the main cause of third-party damage on the...
123
Authors: Rong Sheng Chen, J.M. Burns, Timothy P. Bradshaw, P.T. Cole, P. Jarman, R. Theobald, D. Pedder, G.F. Fernando
Abstract:A novel fibre optic sensor system has been developed for detection of acoustic emission. The sensor design was based on a 2×2 fused tapered...
99
Authors: Bing Li Jiang, Kun Tao Yang, Jian Gan Wang, Ya Ming Wu
719
Authors: Yi Ding, Jun Hong Su, Hai Feng Liang
Chapter 2: Measuring and Testing Techniques
Abstract:Laser damage threshold of optical thin film is a critical parameter in measuring laser induced damage. The key to testing damage threshold is...
965
Authors: Song Wen Li
Chapter 1: Acoustics and Ultrasonic Measurement
Abstract:The Parametric Acoustic Receiving Array achieves the directional reception characteristics through an end-fire array of virtual sources by...
47