Paper Title:
Structural Changes of UHV Deposited Titanium Thin Films in Presence of Oxygen Flow and Temperature
  Abstract

Ti films of same thickness, and near normal deposition angle, and same deposition rate were deposited on glass substrates, at room temperature, under UHV conditions. Different annealing temperatures as 393K, 493K and 593K with uniform 8 cm3/sec, oxygen flow, were used for producing titanium oxide layers. Their nanostructures were determined by AFM and XRD methods. Roughness of the films changed due to annealing process. The gettering property of Ti and annealing temperature can play an important role in the nanostructure of the films.

  Info
Periodical
Chapter
Chapter 5: Coatings and Surface Engineering
Edited by
Wu Fan
Pages
1094-1098
DOI
10.4028/www.scientific.net/AMM.110-116.1094
Citation
H. Kangarlou, M. B. Gharahasanloo, A. A. Saray, R. M. Gharabagh, "Structural Changes of UHV Deposited Titanium Thin Films in Presence of Oxygen Flow and Temperature", Applied Mechanics and Materials, Vols. 110-116, pp. 1094-1098, 2012
Online since
October 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jian Sheng Xie, Ping Luan, Jin Hua Li
Chapter 9: Composite Materials II
Abstract:Using magnetron sputtering technology, the CuInSi nanocomposite thin films were prepared by multilayer synthesized method. The structure of...
2770
Authors: Ching Fang Tseng, Yun Pin Lu, Hsin Han Tung, Pai Chuan Yang
Chapter 3: Electrical, Magnetic and Optical Ceramics
Abstract:This paper describes physical properties of (Ca0.8Sr0.2)TiO3 were deposited by sol-gel method with a fix per-heating temperature of 400oC for...
1171
Authors: Omar Abbes, Feng Xu, Alain Portavoce, Christophe Girardeaux, Khalid Hoummada, Vinh Le Thanh
Chapter 8: Diffusion in Electronic Materials
Abstract:An alternative solution for producing logic devices in microelectronics is spintronics (SPIN TRansport electrONICS). It relies on the fact...
439
Authors: Tai Long Gui, Si Da Jiang, Chun Cheng Ban, Jia Qing Liu
Chapter 2:Advanced Material Science and Technology
Abstract:AlN dielectric thin films were deposited on N type Si(100) substrate by reactive radio frequency magnetron sputtering that directly...
409