Paper Title:
Effects of Assembly Pressure on the Gas Diffusion Layer and Performance of a PEM Fuel Cell
  Abstract

Assembly pressure plays an important role in the factors affecting the performance of a PEM fuel cell. An insufficient clamping pressure may cause large contact resistance and thus lower the cell performance. On the other hand, over-clamping may reduce the porosity and permeability of the gas diffusion layer (GDL) and also result in poor cell performance. Therefore, it is very important to determine the proper assembly pressure for obtaining optimal performance. In this study, we design a special test fixture to evaluate the effect of assembly pressure on the performance of a PEM fuel cell. Without disassembling the fuel cell, the clamping pressure can be adjusted in situ to measure the cell performance directly and precisely. The unique single cell design eliminates the influence of gasket around the membrane electrode assembly (MEA) and makes it possible to estimate the compression effect of GDL independently. Three different types of carbon paper are used in the experiments as the GDLs. The variations of water contact angle, gas permeability, and in-plane electrical resistivity with the assembly pressure are also measured to explore the effects of assembly pressure on these physical properties. The results show that an optimal assembly pressure is always observed in each case, indicating an adequate compression on GDL is quite necessary for fuel cells.

  Info
Periodical
Chapter
Chapter 1: Materials Behavior
Edited by
Wu Fan
Pages
48-52
DOI
10.4028/www.scientific.net/AMM.110-116.48
Citation
H. M. Chang, M. H. Chang, "Effects of Assembly Pressure on the Gas Diffusion Layer and Performance of a PEM Fuel Cell", Applied Mechanics and Materials, Vols. 110-116, pp. 48-52, 2012
Online since
October 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Thanganathan Uma, Masayuki Nogami
Abstract:Sol-gel derived high proton conducting P2O5-SiO2-PMA (phosphomolybdic acid, H3PMo12O40 nH2O) glasses as electrolyte were used for the H2/O2...
149
Authors: Mohammad Ali Abdelkareem, Nobuyoshi Nakagawa
Abstract:The supply of water to the anode from the cathode through the electrolyte membrane is a critical factor for the operation of vapor feed DMFC...
78
Authors: Hui He, Peng Tao Sun, You Sheng Xu
Chapter 6: Surface Technology
Abstract:In this paper, a three-dimensional, complex seepage model of a proton exchange membrane fuel cell (PEMFC) is studied, the corresponding...
1972
Authors: Shi Gang Yu, Hui He, You Sheng Xu
Chapter 1: Development and Utilization of Solar Energy
Abstract:A composite three-dimensional mathematical model of proton exchange membrane fuel cell is proposed, the corresponding finite element method...
376
Authors: Chin Ming Chung, Ching Huei Lin, Che Wei Lin
Session 1: Materials for Environmental Protection and Energy Application
Abstract:A multiple physical finite elements to analyze software (COMSOL Multiphysics) is employed to investigate serpentine flow channels of a small...
261