Paper Title:
Stress Distribution Rule of Reinforced Concrete Specimen under Uniaxial Tension
  Abstract

A numerical test code named RFPA (Realistic Failure Process Analysis) was used to investigate the stress filed transformation process of the reinforced concrete specimen under uniaxial tensile loading. The periodically distributed fracture spacing phenomenon exists in the reinforced concrete structure and the concrete cover thickness was an important factor influence the average crack spacing and crack number. The numerical simulation results show that the stress fields on the concrete between the two adjacent cracks go through a variation process from tensile stress to compressive stress with the increasing of the concrete cover thickness value. It is clear that the stress distribution and fracture spacing were related to the concrete cover thickness under the condition that the materials characteristics were certain (such as concrete and reinforcement materials).In addition, if there was a new crack produced, the location was sure in the middle of the two adjacent cracks since the maximum stress occurred in the middle of the two adjacent cracks. So, it indicates that the concrete cover thickness can influence the average fracture spacing and the crack number in the reinforced concrete prism specimen.

  Info
Periodical
Chapter
Chapter 1: The Basic of Mechanics and Research Methods
Edited by
Huixuan Zhang, Ye Han, Fuxiao Chen and Jiuba Wen
Pages
53-57
DOI
10.4028/www.scientific.net/AMM.117-119.53
Citation
J. X. Zhang, X. Z. Guo, S. G. Zhuo, C. A. Tang, "Stress Distribution Rule of Reinforced Concrete Specimen under Uniaxial Tension", Applied Mechanics and Materials, Vols. 117-119, pp. 53-57, 2012
Online since
October 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Xing Guo Wang, Zhao Xia Cheng, Yongchao Hao, Yi Xin Wang
Abstract:Mixing three different fiber composites into concrete specimens respectively, compressive strength, splitting tensile strength and flexural...
1976
Authors: Ke Liu, Yan Ming Wang, Wen Wen Yang, Yong Sun
Chapter 1: Advanced Materials Science
Abstract:The fiber reinforced concrete with flexible fiber and rigid fiber respectively added into C30 plain concrete, curing under standard condition...
619
Authors: Zhi Xiang Yu, Lan Yan Zhang, Ya Na Zhao, Tao Wei
Chapter 4: Road and Bridge Engineering
Abstract:In order to study effectiveness of measures taken to protect mountain bridge piers against rockfall in the upper reaches of the Minjiang...
1683