Paper Title:
Effects of Nano-CaCO3 on the Compressive Strength and Microstructure of High Strength Concrete in Different Curing Temperature
  Abstract

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.

  Info
Periodical
Chapter
Chapter 1: Materials Science and Engineering
Edited by
Dongye Sun, Wen-Pei Sung and Ran Chen
Pages
126-131
DOI
10.4028/www.scientific.net/AMM.121-126.126
Citation
Q. L. Xu, T. Meng, M. Z. Huang, "Effects of Nano-CaCO3 on the Compressive Strength and Microstructure of High Strength Concrete in Different Curing Temperature", Applied Mechanics and Materials, Vols. 121-126, pp. 126-131, 2012
Online since
October 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jin Bang Wang, Zong Hui Zhou, Dong Yu Xu
Abstract:Combining with the utilization of waste, an new idea of using the waste to prepare high-strength artificial aggregates was put forward in...
906
Authors: Miao Zhou Huang, Tao Meng, Xiao Qian Qian, Jin Jian Zhang
Abstract:The flow ability, mechanical properties and microstructure of concrete with different strength grades affected by nano-SiO2 and...
480
Authors: Yan Kun Zhang, Er Yan Chen, Zhen Lei Guo
Chapter 2: Advanced Construction Materials
Abstract:From the experimental research, the cube compressive strength and prism compressive strength of combined aggregate concrete are compared....
413
Authors: Bing Chen, Xin Yuan Yang, Ning Liu
Chapter 3: Green Building Materials
Abstract:Magnesium phosphate cement (MPC) was modified by fly ash, silica fume and re-dispersible latex powder and the properties of modified MPC,...
796
Authors: Hong Zhu Quan
Chapter 2: Material Engineering and Material Applications
Abstract:The effects of sustained high temperature on concrete properties are discussed in this paper. In this experiment, concrete with 6 types of...
150