Paper Title:
DOE Analysis of the Influence of Sand Size and Pouring Temperature on Porosity in LFC
  Abstract

Lost foam casting is a relatively new process in commercial terms and is widely used to produce defect free castings owing to its advantages like producing complex shape and acceptable surface finish. In the present research, experimental investigations in lost foam casting of aluminium-silicon cast alloy, LM6, were conducted. The main objective of the study was to evaluate the effect of different sand sizes and pouring temperatures on the porosity of thin-wall castings. A stepped pattern was used in the study and the focus of the investigations was at the thinnest 3 mm section. A full 2-level factorial design experimental technique was employed to plan the experiment and subsequently identify the significant factors which affect the casting porosity. The result shows that increasing in the pouring temperature decreases the porosity in the thin-wall section of casting. Finer sand size is more favourable than coarse size for LFC mould making process.

  Info
Periodical
Chapter
Chapter 5: Materials in Energy and Environment (2)
Edited by
Dongye Sun, Wen-Pei Sung and Ran Chen
Pages
2661-2665
DOI
10.4028/www.scientific.net/AMM.121-126.2661
Citation
S. Izman, A. Shayganpour, M.H. Idris, H. Jafari, "DOE Analysis of the Influence of Sand Size and Pouring Temperature on Porosity in LFC", Applied Mechanics and Materials, Vols. 121-126, pp. 2661-2665, 2012
Online since
October 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hwa Chul Jung, Ye Sik Kim, Kwang Seon Shin
Abstract:The demand for magnesium alloys has increased significantly during the past decade in the automotive and electronic industries where weight...
397
Authors: E.P. Masuku, Gonasagren Govender, L. Ivanchev, Heinrich Möller
Abstract:Rheocasting of alloys A206 and A201 was investigated in this study. Conical bars with different silver contents were produced using CSIR...
151
Authors: Yan Wei Sui, Ai Hui Liu, Bang Sheng Li, Jing Jie Guo, Wei Biao Ju
Chapter 1: Materials Properties
Abstract:Ti-6Al-4V alloy castings are made by means of induction melting technology. The relationships between grain size and tensile strength, yield...
496
Authors: Ying Zhang, Guo Rui Jia, Xian Jiao Xie, Shui Sheng Xie, Jin Yu He, De Fu Li, Wen Sheng Sun, Mao Peng Geng
Smart/Intelligent Materials/Intelligent Systems
Abstract:Numerical method was used to simulate the solidification process of zinc-aluminum alloy Zamak 5, shrinkage porosity of the zinc-aluminum...
2902
Authors: W.M. Mao, Z.Z. Chen, H.W. Liu, Y.G. Li
Chapter 4: Process Development
Abstract:The semi-solid slurry of A356 aluminum alloy was prepared through a serpentine pouring channel, which is a new method proposed recently for...
404