Paper Title:
Theoretical Study on Axial Capacity of CFRP Reinforced Self-Stressing Concrete Filled Steel Tubes
  Abstract

Since the expansion of the cement during curing was constraint by the steel tube, the concrete core in the self-stressing concrete-filled steel tubes (SSCFST) is under tri-axially compression before applying load, which increases the axial capacity of the SSCFST. In addition, Carbon fiber reinforced polymer (CFRP) wrapping can avoid bucking of the steel tube, increase the axial capacity and improve the durability of SSCFST. This study presents a theoretical study on axial capacity of the SSCFST wrapped with CFRP sheets. Several basic assumptions are proposed. The ultimate equilibrium method was employed to analyze the axial capacity, of which two limit states, including steel tube bucking and CFRP sheets rupturing were considered. The analytical results from an example show that the initial self-stress improves axial capacity of the SSCFST by about 30% and the CFRP reinforcement improves axial capacity by about 15%.

  Info
Periodical
Chapter
Chapter 5: Materials in Energy and Environment (2)
Edited by
Dongye Sun, Wen-Pei Sung and Ran Chen
Pages
3025-3029
DOI
10.4028/www.scientific.net/AMM.121-126.3025
Citation
H. Li, J. Deng, J. H. Lin, "Theoretical Study on Axial Capacity of CFRP Reinforced Self-Stressing Concrete Filled Steel Tubes", Applied Mechanics and Materials, Vols. 121-126, pp. 3025-3029, 2012
Online since
October 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jing Si Huo, Guo Wang Huang, Yan Xiao
Abstract:This paper experimentally investigated the effects of axial load level on the residual strength and stiffness of concrete-filled steel...
769
Authors: Yan Kun Zhang, Xiao Hu Li, Pan Zhang
Chapter 1: High Strength High Performance Materials and New Structural System
Abstract:Based on the experiment, the splitting tensile strength and axial tensile strength of specified density steel fiber concrete are studied. The...
330
Authors: Yue Ling Long, Jian Cai
Chapter 1: Civil Engineering
Abstract:A new method based on material properties instead of experimental data was proposed to assess the ductility of concrete-filled steel box...
78
Authors: Cun Hui, Wan Lin Cao, Hong Ying Dong
Chapter 2: Structural Engineering
Abstract:The structural measures about puting the additional energy dissipation plat at the bottom of the CFST columns where bears more stress, was...
620