Paper Title:
MCMC Sampling Statistical Method to Solve the Optimization
  Abstract

This paper designs a class of generalized density function and from which proposed a solution method for the multivariable nonlinear optimization problem based on MCMC statistical sampling. Theoretical analysis proved that the maximum statistic converge to the maximum point of probability density which establishing links between the optimization and MCMC sampling. This statistical computation algorithm demonstrates convergence property of maximum statistics in large samples and it is global search design to avoid on local optimal solution restrictions. The MCMC optimization algorithm has less iterate variables reserved so that the computing speed is relatively high. Finally, the MCMC sampling optimization algorithm is applied to solve TSP problem and compared with genetic algorithms.

  Info
Periodical
Chapter
Chapter 2: Advanced Design Science (2)
Edited by
Dongye Sun, Wen-Pei Sung and Ran Chen
Pages
937-941
DOI
10.4028/www.scientific.net/AMM.121-126.937
Citation
T. Z. Rong, Z. Xiao, "MCMC Sampling Statistical Method to Solve the Optimization", Applied Mechanics and Materials, Vols. 121-126, pp. 937-941, 2012
Online since
October 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yong Xian Li, Bin Wang, Guang Ping Peng
Abstract:A new intelligent orthogonal optimization algorithm for robust design is proposed in order to improve accuracy and efficiency. The next...
301
Authors: Da Wang, Hong Yu Bian
Chapter 1: Mechatronics
Abstract:In order to further improve the accuracy of the sonar image registration, a novel hybrid algorithm was proposed. It proposed the normalized...
1811
Authors: Si Lian Xie, Tie Bin Wu, Shui Ping Wu, Yun Lian Liu
Chapter 18: Computer Applications in Industry and Engineering
Abstract:Evolutionary algorithms are amongst the best known methods of solving difficult constrained optimization problems, for which traditional...
2846
Authors: Zi Xu, Jing Yu
Chapter 6: Computational Simulation, Monitoring and Analysis in Manufacture
Abstract:This paper proposes the combined direction stochastic approximation method for solving simulation-based optimization problems. The new...
688
Authors: Bei Zhan Wang, Xiang Deng, Wei Chuan Ye, Hai Fang Wei
Chapter 13: Mechanical Control and Information Processing Technology
Abstract:The particle swarm optimization (PSO) algorithm is a new type global searching method, which mostly focus on the continuous variables and...
1787