Paper Title:
B-Spline Curve Fitting Based on Adaptive Particle Swarm Optimization Algorithm
  Abstract

For fitting of ordered plane data by B-spline curve with the least squares, the genetic algorithm is generally used, accompanying the optimization on both the data parameter values and the knots to result in good robust, but easy to fall into local optimum, and without improved fitting precision by increasing the control points of the curve. So what we have done are: combining the particle swarm optimization algorithm into the B-spline curve fitting, taking full advantage of the distribution characteristic for the data, associating the data parameters with the knots, coding simultaneously the ordered data parameter and the number of the control points of the B-spline curve, proposing a new fitness function, dynamically adjusting the number of the control points for the B-spline curve. Experiments show the proposed particle swarm optimization method is able to adaptively reach the optimum curve much faster with much better accuracy accompanied less control points and less evolution times than the genetic algorithm.

  Info
Periodical
Edited by
Qi Luo
Pages
1299-1304
DOI
10.4028/www.scientific.net/AMM.20-23.1299
Citation
Y. H. Sun, Z. L. Tao, J. X. Wei, D. S. Xia, "B-Spline Curve Fitting Based on Adaptive Particle Swarm Optimization Algorithm ", Applied Mechanics and Materials, Vols. 20-23, pp. 1299-1304, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Hui Fu
Chapter 6: Power System and Automation
Abstract:By studying the control algorithms of automatic train operation system,the PSO-B-BP-PID controller based on reparametric B-Spline Neural...
906
Authors: Hai Dong Wu, Jie Dong Chen
Chapter 2: Applied Mechanics and Mechanical Engineering
Abstract:When remanufacturing complex surface parts, such as twisted blade, it is difficult to obtain an accurate model. An iterative...
125