Paper Title:
Validation of Acoustic Emission (AE) Crack Detection in Aerospace Grade Steel Using Digital Image Correlation
  Abstract

Acoustic Emission (AE) is a passive form of non-destructive testing that relies on the detection and analysis of stress waves released during crack propagation. AE techniques are successfully employed number of industries there remains some scepticism in aerospace engineering. The reported investigation details a single four point bend test specimen undergoing fatigue loading. This test is part of a much larger programme designed to demonstrate a technology readiness level (TRL) of five of the use of AE to detect crack initiation and growth in landing gear structures. The completed test required that crack growth had to be monitored to allow a comparison with the detected and located AE signals. The method of crack monitoring had to be non-contact so as not to produce frictional sources of AE in the crack region, preventing the use of crack mouth opening displacement gauges. Furthermore adhesives on the specimen surface had to be avoided to eliminate the possibility that the detected AE was from adhesive cracking, thus the use of strain gauges or foil crack gauges was not possible. A method using Digital Image Correlation (DIC) to monitor crack growth was investigated. The test was stopped during fatigue loading at 1000 cycle intervals and a DIC image captured at peak load. The displacement due to crack growth was observed throughout the investigation and the results compared with the detected AE signals. Results showed a clear correlation between AE and crack growth and added further evidence of TRL5 for detecting fractures in landing gears using AE.

  Info
Periodical
Edited by
R.A.W. Mines and J.M. Dulieu-Barton
Pages
221-226
DOI
10.4028/www.scientific.net/AMM.24-25.221
Citation
R. Pullin, M. J. Eaton, J. J. Hensman, K. M. Holford, K. Worden, S.L. Evans, "Validation of Acoustic Emission (AE) Crack Detection in Aerospace Grade Steel Using Digital Image Correlation", Applied Mechanics and Materials, Vols. 24-25, pp. 221-226, 2010
Online since
June 2010
Export
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Won Beom Kim, Jeom Kee Paik
Abstract:In this research, corrosion fatigue tests using 490MPa TMCP steel were performed in synthetic seawater condition to investigate the...
1043
Authors: R.H.C. Wong, Y.S.H. Guo, K.T. Chau, Wei Shen Zhu, Shu Cai Li
Abstract:This paper presents the crack growth mechanism from a 3-D surface flaw on gabbro specimens using strain measurement and acoustic emission...
2357
Authors: Jian Xin Zhu, Zeng Liang Gao
Abstract:The measurement of crack propagation in solids is of vital importance for the research of the fatigue characteristic of solid materials. By...
2606
Authors: Won Beom Kim, Jeom Kee Paik
Abstract:In this research, corrosion fatigue tests using tensile strength of 490MPa TMCP steel were performed in synthetic seawater condition to...
1145
Authors: Li Hong Gao, Ge Ning Xu, Ping Yang
Structural Strength and Robustness
Abstract:The random formula on fatigue crack growth is deduced by the fatigue crack data and the improved Taguchi method, and the sample estimates of...
1277