Paper Title:
Evaluation of the Impact of Residual Stresses in Crack Initiation with the Application of the Crack Compliance Method Part II, Experimental Analysis
  Abstract

The present work is based on a previous numerical simulation used for the introduction of a residual stress field in a modified compact tensile specimen. The main objective in that paper was to evaluate the effect that previous history has in crack initiation and to establish the new loading conditions needed to propagate a fracture. The experimental analysis presented in this paper was performed to compare and validate the numerical procedure. Several modified compact tensile specimens from a biocompatible material (AISI 316L) were manufactured to estimate the beneficial effect of a residual stress field. The specimens were separated in four batches; an initial group of uncracked specimens was used to establish an evaluation of the induction of a residual stress field produced by an overload; the remaining specimens were separated into three groups where a crack was introduced in each specimen (1 mm, 5 mm and 10 mm respectively) and the residual stress field caused by the application of an overload was determined. The assessment of all the residual stress fields introduced into the specimens was done by the application of the crack compliance method (CCM). The results obtained have provided useful information on the correlation between the numerical and experimental procedures. Furthermore, data concerning the understanding of diverse factors related to crack initiation are discussed in this paper. Finally, the beneficial aspects of the residual stresses are discussed.

  Info
Periodical
Edited by
R.A.W. Mines and J.M. Dulieu-Barton
Pages
261-266
DOI
10.4028/www.scientific.net/AMM.24-25.261
Citation
G. Urriolagoitia-Sosa, B. Romero-Ángeles, L. H. Hernández-Gómez, G. Urriolagoitia-Calderón, J. A. Beltrán-Fernández, C. Torres-Torres, "Evaluation of the Impact of Residual Stresses in Crack Initiation with the Application of the Crack Compliance Method Part II, Experimental Analysis", Applied Mechanics and Materials, Vols. 24-25, pp. 261-266, 2010
Online since
June 2010
Export
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

  | Authors: G. Urriolagoitia-Sosa, G. Urriolagoitia-Calderón, J.M. Sandoval Pineda, Luis Hector Hernández-Gómez, E.A. Merchán-Cruz, R.G. Rodríguez-Cañizo, Juan A. Beltrán-Fernández
Abstract:This work assesses the Crack Compliance Method (CCM), which has been extensively used for the experimental evaluation of residual stresses,...
173
Authors: G. Urriolagoitia-Sosa, E. Zaldivar-González, J.M. Sandoval Pineda, J. García-Lira
Abstract:The interest on the application of the shot peening process to arrest and/or delay crack growth is rising. The main effect of the shot...
109
  | Authors: K.N. Anyfantis, N.G. Tsouvalis
Abstract:The present study involves an experimental and analytical investigation of the Mode II delamination propagation and the fibre bridging...
245
  | Authors: G. Urriolagoitia-Sosa, B. Romero-Ángeles, Luis Hector Hernández-Gómez, G. Urriolagoitia-Calderón, Juan A. Beltrán-Fernández, C. Torres-Torres
Abstract:The understanding of how materials fail is still today a fundamental research problem for scientist and engineers. The main concern is the...
253
Authors: G. Urriolagoitia-Sosa, A. Molina-Ballinas, Vistor Fernando Cedeño Verduzco, B. Romero-Ángeles, G. Urriolagoitia-Calderón, Luis Hector Hernández-Gómez, Juan A. Beltrán-Fernández
Abstract:This paper presents results obtained on the harmful effect that a lamination process can cause in AISI 1018 steel during the manufacturing...
482