Paper Title:
A Hybrid Approach Based on Artificial Neural Network (ANN) and Differential Evolution (DE) for Job-Shop Scheduling Problem
  Abstract

In this paper, we proposed a new hybrid approach, combining ANN and DE(Differential Evolution), for job-shop scheduling. Job-shop scheduling can be decomposed into a constraint satisfactory part and an optimization part for a specified scheduling objective. For this, an NN and DE-based hybrid scheduling approach is proposed in this paper. First, several specific types of neuron are designed to describe these processing constraints, detecting whether constraints are satisfied and resolving the conflicts by their feedback adjustments. Constructed with these neurons, the constraint neural network (CNN) can generate a feasible solution for the JSSP. CNN here corresponds to the constraint satisfactory part. A gradient search algorithm can be applied to guide CNN operations if an optimal solution needs to be found at a fixed sequence. For sequence optimization, a DE is employed. Through many simulation experiments and practical applica¬tions, it is shown that the approach can be used to model real production scheduling problems and to efficiently find an optimal solution. The hybrid approach is an ideal combination of the constraint analysis and the optimization scheduling method.

  Info
Periodical
Edited by
Zhenyu Du and Bin Liu
Pages
754-757
DOI
10.4028/www.scientific.net/AMM.26-28.754
Citation
F. Q. Zhao, J. H. Zou, Y. H. Yang, "A Hybrid Approach Based on Artificial Neural Network (ANN) and Differential Evolution (DE) for Job-Shop Scheduling Problem", Applied Mechanics and Materials, Vols. 26-28, pp. 754-757, 2010
Online since
June 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Na Rui Bu, Run Shan Bai, Zhang Zhen Li, De Zhong Lin
Chapter 6: Vibration, Noise Analysis and Control
Abstract:Analysis of slope stability based on BP neural network, the analytical model of slope stability is built. Aiming at the defects that BP...
1263
Authors: Si Lian Xie, Tie Bin Wu, Shui Ping Wu, Yun Lian Liu
Chapter 18: Computer Applications in Industry and Engineering
Abstract:Evolutionary algorithms are amongst the best known methods of solving difficult constrained optimization problems, for which traditional...
2846
Authors: Bei Zhan Wang, Xiang Deng, Wei Chuan Ye, Hai Fang Wei
Chapter 13: Mechanical Control and Information Processing Technology
Abstract:The particle swarm optimization (PSO) algorithm is a new type global searching method, which mostly focus on the continuous variables and...
1787
Authors: Fang Li, Yu Wang, Ying Chun Zhong, Zhi Tan
Chapter 16: Application of Information and Network Technology
Abstract:An optimization of multi-varieties and small-batch of production scheduling is proposed, which is embodied the utilization ratio of...
3177
Authors: Hai Yan Wang
Chapter 6: Production Management
Abstract:This paper presents a hybrid algorithm to address the flexible job-shop scheduling problem (FJSP). Based on Differential Evolution (DE), a...
502