Paper Title:
Damage Detection for Simply Supported Beams Using Mid-Span Displacement Indicator
  Abstract

This paper investigates the detection of damage for simply supported beams to ensure their safety. Based on the analysis of possible kinds of damage may occur, this paper presents a new approach which relies on the fact that any change in local stiffness caused by damage can be reflected by the change of mid-span displacement between the intact and damaged beams. Direct relationship between the change in local stiffness and the measured mid-span displacement values is developed. This approach can identify the geometric locations of damage and then inspection means are used as a complement to find the real damage phenomena within the obtained small region. A numerical example is given to illustrate the feasibility and the effectiveness of the approach. The novel content offered by authors provides a simple, convenient, cost-effective, and nondestructive damage detection approach for simply supported beams.

  Info
Periodical
Edited by
Honghua Tan
Pages
1532-1536
DOI
10.4028/www.scientific.net/AMM.29-32.1532
Citation
S.J. Zhang, Z.J. Ma, "Damage Detection for Simply Supported Beams Using Mid-Span Displacement Indicator", Applied Mechanics and Materials, Vols. 29-32, pp. 1532-1536, 2010
Online since
August 2010
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Fei Zheng, Jin Yu Xu, Yong Chen, De Hui Zhao
Abstract:Underground arch structure is an important structure form of civil air defense engineering, and its damage detection is an important link in...
2576
Authors: Long Qiao, Asad Esmaeily
Chapter 2: Monitoring and Control of Structures
Abstract:Deterioration of structures due to aging, cumulative crack growth or excessive response significantly affects the performance and safety of...
834
Authors: You Bao Jiang, Guo Yu Liao
Chapter 1: Vibration Engineering
Abstract:Modal parameters are widely adopted to identify structural damages. This paper explores the mode jumping problems in damage identification...
307
Authors: M. O. Abdalla, E. Al-Khawaldeh
Chapter 23: Computer-Aided Design, Manufacturing, and Engineering
Abstract:An optimal damage detection sensor placement methodology is presented. The techniques utilize a Particle Swarm Optimization (PSO) algorithm....
5336
Authors: Jian Yuan, Wen Gang Zhu, Min Chen
Chapter 3: Security and Life Cycle Engineering Design of Civil Engineering
Abstract:The failure process for an extra-long pre-stressed concrete beam under static loads was simulated based on the elastic damage theory with the...
1318