Paper Title:
FE Simulation of Laser Ultrasonic Surface Waves in a Biomaterial Model
  Abstract

This paper describes a study of laser generated ultrasonic waves in an 2-layer elastic, isotropic biomaterial model, in order to establish a modelling technique to simulate the thermoelastic response of high-power short pulse laser beams in human skin. The theory proposed in this paper takes into consideration the fundamental understanding of the laser/material interface. A finite element model using the commercial finite element code ANSYS is used to study the effects of laser pulse duration and energy flux contribution to the surface waves. The simulation comprises a set of boundary conditions that approximate a heat flux point source located on top of the surface of the material. Because of the time scale of interest, the elastic effects do not feed back into the thermal problems, so that a sequential coupled-field analysis was performed where the thermal and elastodynamic fields are uncoupled and treated separately. The initial finite element analysis involves a transient thermal analysis using a heat flux with Gaussian spatial variation to simulate the laser pulse heating. The results from the thermal analysis were read and applied to the structural analysis where the out-of-plane displacements histories are analyzed in the skin model with varying thicknesses

  Info
Periodical
Edited by
J.M. Dulieu-Barton and S. Quinn
Pages
85-90
DOI
10.4028/www.scientific.net/AMM.3-4.85
Citation
A. L'Etang, Z. H. Huang, "FE Simulation of Laser Ultrasonic Surface Waves in a Biomaterial Model", Applied Mechanics and Materials, Vols. 3-4, pp. 85-90, 2005
Online since
August 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Shu Huang, Jian Zhong Zhou, Yi Bin Chen, C.D. Wang, X.D. Yang, Y.C. Dai
Abstract:An appropriate finite element analytical model for laser compound forming (LCF) was established with ABAQUS code, and then some key technical...
3857
Authors: Mao Ke Tao, Zong Bao Shen, Cheng Zhang, Kai Wang
Abstract:Laser thermal stress forming is a flexible forming process that forms sheet metal by means of stresses induced by external heat instead of by...
1414
Authors: Ke Dian Wang, Bin Liu, Wen Qiang Duan, Wen Jun Wang
Chapter 3: Material Science, Machine System and Production System
Abstract:In this paper, ANSYS, a finite element analysis software is used to simulate the change of temperature field in micro-hole processing with...
324
Authors: Eneko Ukar, Aitzol Lamikiz, S. Martínez, Luis Norberto López de Lacalle
Abstract:In laser surface treatment the laser beam is used as energy source for surface modification improving aspects such as mechanical properties,...
127
Authors: Kohei Ogura, Jiang Zhu, Tomohisa Tanaka, Yoshio Saito
Abstract:In this research, machining characteristics of excimer laser ablation for three-dimensional machining of PMMA (Polymethyl methacrylate) is...
192