Paper Title:
Effects of Cr Doping on the Structural and Electrochemical Properties of V6O13
  Abstract

It has been demonstrated that V6O13 is a very attractive cathode materials for rechargeable lithium-ion batteries. Cr3+ was doped to improve its electrochemical property. CrxV6O13(x =0.01~0.05) cathode materials were prepared using NH4VO3 and Cr2O3 as raw material by solid phase method in argon atmosphere. The best electrochemical properties of CrxV6O13 were obtained under the optimum conditions as follows: the argon flow rate is 85mL/min, the heating rate is 5°C /min, the holding time 1h at 180°C, 1h at 300°C and 30 min at 450°C. The structural and electrochemical properties were examined by means of X-ray diffraction, SEM and charge–discharge tests. The results demonstrated that the powders maintain double cavity chain structure regardless of the chromium doping. When the Cr doping of x = 0.03, capacity is highest. Maximum initial discharge capacity is 334mA•h/g, 80% of theoretical capacity. During discharge process there is 6.5 Li+ embedded in the Molecules of doping. After discharge cathode became Li6.5Cr0.03V6O13.

  Info
Periodical
Edited by
Shengyi Li, Yingchun Liu, Rongbo Zhu, Hongguang Li, Wensi Ding
Pages
1780-1783
DOI
10.4028/www.scientific.net/AMM.34-35.1780
Citation
Y. C. Liu, Z. G. Zou, F. Long, "Effects of Cr Doping on the Structural and Electrochemical Properties of V6O13", Applied Mechanics and Materials, Vols. 34-35, pp. 1780-1783, 2010
Online since
October 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jong Uk Kim, Jin Kyu Kim, Jae Won Choi, Yeon Hwa Kim, Jou Hyeon Ahn, Guk-Tae Kim, Dae Kyoo Jun, Hal Bon Gu
Abstract:The purpose of this research is to develop tin oxide electrode for lithium ion polymer battery. We have investigated cyclic voltammetry and...
606
Authors: Meng Liang Tong, Xuan Yan Liu
Abstract:Calcium zincate as an active material in Zn/Ni secondary battery has been successfully synthesized by microwave method. The chemical...
868
Authors: Jun Li, Yan Zhou, Yu Ying Zheng, Sheng He Tang, Da Guang Li
Abstract:Carbon-doped LiFePO4/C cathode materials for lithium power batteries were prepared by liquid-state precipitation reaction. Their...
302
Authors: Ying Sun, Jian Feng Huang, Li Yun Cao, Jian Peng Wu
Chapter 1: Novel Processing and Manufacturing
Abstract:Olivine LiFePO4 and LiFePO4-C composite cathode materials were prepared by microwave hydrothermal process using...
199
Authors: Hong Quan Liu, Fei Xiang Hao, Feng Lin Yao, Yi Jie Gu, Yun Bo Chen
Abstract:LiFePO4 compound has been paid considerable attention as a promising positive electrode material. In this work, LiFePO4 compound was...
46