Paper Title:
On Semi-Supervised Learning Genetic-Based and Deterministic Annealing EM Algorithm for Dirichlet Mixture Models
  Abstract

We propose a genetic-based and deterministic annealing expectation-maximization (GA&DA-EM) algorithm for learning Dirichlet mixture models from multivariate data. This algorithm is capable of selecting the number of components of the model using the minimum description length (MDL) criterion. Our approach benefits from the properties of Genetic algorithms and deterministic annealing algorithm by combination of both into a single procedure. The population-based stochastic search of the GA&DA explores the search space more thoroughly than the EM method. Therefore, our algorithm enables escaping from local optimal solutions since the algorithm becomes less sensitive to its initialization. The GA&DA-EM algorithm is elitist which maintains the monotonic convergence property of the EM algorithm. We conducted experiments on the WebKB and 20NEWSGROUPS. The results show that show that 1) the GA&DA-EM outperforms the EM method since: Our approach identifies the number of components which were used to generate the underlying data more often than the EM algorithm. 2) the algorithm alternatives to EM that overcoming the challenges of local maxima.

  Info
Periodical
Edited by
Yuanzhi Wang
Pages
151-156
DOI
10.4028/www.scientific.net/AMM.39.151
Citation
J. H. Bai, K. Li, X. X. Zhang, "On Semi-Supervised Learning Genetic-Based and Deterministic Annealing EM Algorithm for Dirichlet Mixture Models", Applied Mechanics and Materials, Vol. 39, pp. 151-156, 2011
Online since
November 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hai Feng Li, Ning Zhang
Chapter 1: Transportation & Service Science
Abstract:Maximal frequent itemsets are one of several condensed representations of frequent itemsets, which store most of the information contained in...
21
Authors: Dong Wang, Shi Huan Xiong
Chapter 8: Nanomaterials and Nanomanufacturing
Abstract:The learning sequence is an important factor of affecting the study effect about incremental Bayesian classifier. Reasonable learning...
1455
Authors: Wei Hua Fang
Chapter 6: Applied Mechanics
Abstract:In order to obtain geotechnical engineering material mechanical parameters correctly by using back analysis and overcome shortcoming of...
1647
Authors: Si Lian Xie, Tie Bin Wu, Shui Ping Wu, Yun Lian Liu
Chapter 18: Computer Applications in Industry and Engineering
Abstract:Evolutionary algorithms are amongst the best known methods of solving difficult constrained optimization problems, for which traditional...
2846
Authors: Xue Feng Wu, Yu Fan
Chapter 6: Mechatronics
Abstract:A new algorithms for parameters of an image irregular boundary circle parameters is presented, which is based on “Curve-Approximate Method”...
639