Paper Title:
Research on the Forming Limit Diagram Based on Laser Shock Forming
  Abstract

Laser shock forming (LSF) of sheet metal is a novel technology in plastic deformation. It is necessary to correctly predict the Forming Limit Diagram (FLD) based on LSF. New failure maximum thickness reduction rate criterion is used to determine the forming limit based on the numerical system during LSF. The relationship model between maximum thickness reduction rate and the strain path is built. In addition, the effects of strain path and strain-hardening exponent on forming limit are considered. The maximum thickness reduction rate under equi-biaxial tensile strain path can be determined easily during LSF and the expression of the criterion is determined finally. Then the limit strains under other strain paths between uniaxial tension to equi-biaxial tension can be determined by the criterion combined with numerical simulation of forming process. The criterion can predict forming limits for sheet metal exactly and makes it possible to determine forming limit strains under different strain paths only through equi-biaxial tensile test during LSF.

  Info
Periodical
Edited by
Ran Chen
Pages
148-152
DOI
10.4028/www.scientific.net/AMM.44-47.148
Citation
Y. F. Jiang, Z. Z. Tang, Z. F. Li, L. Fang, "Research on the Forming Limit Diagram Based on Laser Shock Forming", Applied Mechanics and Materials, Vols. 44-47, pp. 148-152, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Erick Petta Marinho, Alberto Sakata, Erika Fernanda Prados, Gilmar Ferreira Batalha
IV. Design, Testing and Modelling
Abstract:Superplasticity is characterized by high elongations under a high strain rate sensibility, and it’s variation with strain rate, temperature...
224