Paper Title:
Experimental Investigation on the Polypropylene Fiber Concrete Performance of Yellow River Canal Lining in the Middle Line of South-to-North Water Transfer Project
  Abstract

In order to meet the running needs of the first-stage construction in the middle line of South-to-North Water Transfer Project, the canal lining of both sides of Yellow River Tunnels Project need the use of mechanized equipment construction in order to improve the quality and efficiency of lining construction, there is a need to study the feasibility of the use of polypropylene fiber concrete instead of reinforced concrete in canal lining. This paper analyzes the effect of polypropylene fiber on concrete shrinkage and crack resistance. The results show that all three polypropylene fibers have properties of a low density and high elongation, the dispersivity test results show that dispersivity is better when stirring fiber A after a certain period of time. After the incorporation of polypropylene fibers, the concrete splitting tensile strength is significantly increased, altogether with ultimate tensile value and frost resistance. The incorporation of polypropylene fibers increases the tensile strength of concrete and improve the toughness of it. Compared with standard concrete, the early shrinkage of polypropylene fiber concrete is significantly lower, the incorporation of polypropylene fibers can take the place of steel mesh in concrete cracking, especially in the early control of concrete cracks, it can effectively prevent and suppress the cracks formation and development. This paper recommends the concrete proportioning parameters meeting the requirements of canal lining concrete technology and construction.

  Info
Periodical
Edited by
Zhou Mark
Pages
1987-1991
DOI
10.4028/www.scientific.net/AMM.52-54.1987
Citation
H. G. Fang, P. H. Liu, T. Zhang, "Experimental Investigation on the Polypropylene Fiber Concrete Performance of Yellow River Canal Lining in the Middle Line of South-to-North Water Transfer Project", Applied Mechanics and Materials, Vols. 52-54, pp. 1987-1991, 2011
Online since
March 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ming Kun Yew, Othman Ismail
Abstract:The mechanical properties of hybrid nylon-steel-fiber-reinforced concrete were investigated in comparison to that of the...
1704
Authors: Meng Fu Wang, Xing Yu Song
Abstract:The relationships between the mechanical properties of modified concrete and the composition of latex blend were studied. Influence of steel...
1869
Authors: Hong Wei Wang
Chapter 1: Sustainable Construction Materials Technology
Abstract:A designed experimental study has been conducted to investigate the effect of polypropylene fiber on the compressive strength and flexural...
30
Authors: Yan Kun Zhang, Xiao Hu Li, Pan Zhang
Chapter 1: High Strength High Performance Materials and New Structural System
Abstract:Based on the experiment, the splitting tensile strength and axial tensile strength of specified density steel fiber concrete are studied. The...
330
Authors: Ning Hui Liang, Xin Rong Liu, Ji Sun
Chapter 2: Advanced Building Materials
Abstract:Through compression tests on 30 plain concrete and polypropylene fiber concrete specimens with the dimensions of 100mm × 100mm × 100mm ,...
1584