Paper Title:
Crack-Tip Shielding Effect on Fatigue Crack Propagation in Porous Silicon Carbide
  Abstract

A sharply notched specimen of porous silicon carbide with porosity of 37% was fatigued under four-point bending. The opening displacement of a fatigue crack was measured at several positions along cracks by using scanning electron microscopy. The crack propagation curve was divided into stages I, II, and III. The crack propagation rate first decreased with crack extension in stage I and became constant in stage II. In stage III, the crack propagation rate increased again. The range of crack opening displacement measured in SEM was lower than that calculated from the applied load range by FEM, suggesting that the anomalous variation of the crack propagation rate with crack extension was caused by crack-tip shielding due to crack face contact. The crack-tip stress intensity factor was estimated as a true crack driving force from the relation between the crack opening displacement and the applied load. The amount of crack-tip shielding increased very quickly with crack extension, reducing the crack-tip stress intensity factor in stage I. In stage II, the increasing applied stress intensity factor is balanced by the increase in the crack-tip shielding. The crack-tip stress intensity factor increases with crack extension in stage III.

  Info
Periodical
Edited by
Abdul Nassir bin Ibrahim, Meor Yusoff Meor Sulaiman, Wan Saffiey Wan Abdullah, Mohd Reusmaazran Yusof, Amry Amin Abas and Khairiah Mohd Yazid
Pages
28-34
DOI
10.4028/www.scientific.net/AMM.83.28
Citation
K. Tanaka, Y. Kita, "Crack-Tip Shielding Effect on Fatigue Crack Propagation in Porous Silicon Carbide", Applied Mechanics and Materials, Vol. 83, pp. 28-34, 2011
Online since
July 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Zhong Guang Wang, H. Zhang, Q.S. Zang, Zhe Feng Zhang, Z.M. Sun
693
Authors: Won Beom Kim, Jeom Kee Paik
Abstract:In this research, corrosion fatigue tests using 490MPa TMCP steel were performed in synthetic seawater condition to investigate the...
1043
Authors: Won Beom Kim, Jeom Kee Paik
Abstract:In this research, corrosion fatigue tests using tensile strength of 490MPa TMCP steel were performed in synthetic seawater condition to...
1145
Authors: Yan Hua Zhao, Hua Zhang, Wei Dong
Abstract:The wedge splitting (WS) test is now a promising method to perform stable fracture mechanics tests on concrete-like quasi brittle materials....
425