Paper Title:
Development Analysis of I-Longitudinal Crack in the Vault of Underwater Tunnel Secondary Lining
  Abstract

In this paper secondary lining of an underwater tunnel which had appeared I-longitudinal crack was taken as study object according to theory of fracture mechanics. Finite Element analysis was carried out to calculate the stress intensity factor at the tip of I-longitudinal crack which located in vault, then to analyze the extended state of crack based on double-K fracture criteria. The computation results indicate that the stress intensity factor at the tip of I-longitudinal cracks which appear within 20 degrees of the vault do not exceed unstable fracture toughness, lining is in stable growth stage and do not occur instable failure. The stress intensity factor at the tip of I-longitudinal cracks appeared in vault is maximum and appeared in both side of vault is minor, the further away from vault the less of stress intensity factor. When water level below the top of tunnel, with the rise of water level the stress intensity factor at the tip of I-longitudinal decrease and the external water pressure has restrain effect to the crack extension. When water level exceed the top of tunnel, with the rise of water level the stress intensity factor at the tip of large depth of crack decrease rapidly until arrive negative value, then increase backward until greater than unstable fracture toughness and cause lining structural local instable failure.

  Info
Periodical
Edited by
Xuejun Zhou
Pages
2472-2476
DOI
10.4028/www.scientific.net/AMM.90-93.2472
Citation
W. Wang, Z. P. Ni, D. Z. Chen, G. M. Yin, P. Ding, S. C. Liao, "Development Analysis of I-Longitudinal Crack in the Vault of Underwater Tunnel Secondary Lining", Applied Mechanics and Materials, Vols. 90-93, pp. 2472-2476, 2011
Online since
September 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Jin San Ju, Xiu Gen Jiang, Xiang Rong Fu
Abstract:This paper primarily presents the development and application of automation computational analysis techniques to determine the dynamic...
705
Authors: Zai Lin Yang, Hua Nan Xu, Mei Juan Xu, Bai Tao Sun
Abstract:In this paper, we study the problems of scattering of out-of-plane line source load by half-space shallow-embedded circular lining structure...
329
Authors: Yan Hua Zhao, Hua Zhang, Wei Dong
Abstract:The wedge splitting (WS) test is now a promising method to perform stable fracture mechanics tests on concrete-like quasi brittle materials....
425
Authors: Jun Ru Yang, Gong Ling Chen, Li Li Zhang, Jing Sun
VI. Analytical and Numerical Methods for Materials Processing
Abstract:Based on the theoretical study on the tip stress intensity factor (SIF) of the crack normal to and dwelling on the interface, using the...
525