Post-Cracking Steel Fiber Reinforced Concrete Slabs with Subsoil Interaction

Article Preview

Abstract:

The aim of the paper is to investigate the flexural behavior and property changes of concrete structures reinforced by steel fibers (SFRC) and to use the results for carrying capacity assessment of SFRC post-cracked slab on ground structure with subsoil interaction effect. Because the national codes cover neither design nor assessment of SFRC structures the investigation is generally based on the nonlinear fracture mechanics models to establish the stress-crack opening and load-crack mouth opening displacement relationship. Then the flexural tensile strength and residual flexural tensile strength of the post-cracked SFRC structure is determined with respect to subsoil interaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

210-214

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Veselý, P. Konečný, P. Lehner, P. Pařenica, J. Hurta and L. Žídek. Investigation of fracture and electrical resistivity parameters of cementitious composite for their utilization in deterioration models (2014).

DOI: 10.4028/www.scientific.net/kem.577-578.265

Google Scholar

[2] V. Veselý, P. Frantík, T. Pail and Z. Keršner. Modelling of fracture process zone and related energy dissipation during quasi-brittle fracture (2012) Brittle Matrix Composites 10, BMC 2010 pp.355-365, ISBN 978-085709988-4.

DOI: 10.1533/9780857099891.355

Google Scholar

[3] J. Brožovský, P. Konečný, M. Mynarz and O. Sucharda. Comparison of alternatives for remodelling of laboratory tests of concrete (2009).

Google Scholar

[4] S. Dobiášová and K. Kubečka. Risk Analysis of Steel Construction Projects Documentation Blast Furnaces. Advanced Materials Research. 2014, vol. 899, č. 2014, pp.564-567. DOI: 10. 4028/www. scientific. net/AMR. 899. 564.

DOI: 10.4028/www.scientific.net/amr.899.564

Google Scholar

[5] J. Fridrich and K. Kubečka. Fire Risk in Relation to BIM. Advanced Materials Research. 2014, vol. 899, č. 2014, pp.552-555. DOI: 10. 4028/www. scientific. net/AMR. 899. 552.

DOI: 10.4028/www.scientific.net/amr.899.552

Google Scholar

[6] K. Kubečka, S. Dobiášová, J. Fridrich, P. Vlček and M. Nič. Instruments for Risk Analysis as an Alternative Decision-Making Method in the Forensic Sciences. Advanced Materials Research. 2014, vol. 899, č. 2014, pp.556-559.

DOI: 10.4028/www.scientific.net/amr.899.556

Google Scholar

[7] K. Kubečka, P. Vlček, D. Kubečková and D. Pieszka. Utilization of Risk Analysis Methods in Decision-Making Process on Fitness of Rehabilitation. Advanced Materials Research. 2014, vol. 899, č. 2014, pp.568-571.

DOI: 10.4028/www.scientific.net/amr.899.568

Google Scholar

[8] K. Kubečka, P. Vlček and D. Kubečková. Assessment and Damage for Building Structures Risk Analysis Methods. Advanced Materials Research. 2014, vol. 899, č. 2014, pp.535-538. DOI: 10. 4028/www. scientific. net/AMR. 899. 535.

DOI: 10.4028/www.scientific.net/amr.899.535

Google Scholar

[9] K. Kubečka, P. Vlček, D. Kubečková and J. Česelský. Alternative procedure for determining the value of coefficient k6 comparative when using the method of valuation of buildings. In: 10th International Conference on Strategic Management and its Support by Information Systems: Valasske Mezirici, Czech republic. Proceedings Paper. VSB-Technical university of Ostrava, 17. Listopadu 15, Ostrava, 70833, Czech republic: Valasske Mezirici, Czech republic, 2013, pp.88-96.

DOI: 10.17973/mmsj.2022_10_2022122

Google Scholar

[10] D. Pieszka. Steel fiber reinforced concrete structure stress, deformation and defect with soil-structure interaction effect. Ostrava, 2014. Dissertation Thesis. VSB-Technical university of Ostrava. Supervisor K. Kubečka.

Google Scholar