Paper Title:
Evaluation Model of Decoy Effectiveness Based on Improved GA-BP Neural Network
  Abstract

When evaluating decoy effectiveness by means of BP neural network, training sometimes failed because of local extremum problem. The genetic algorithm neural network model for evaluating camouflage effectiveness of decoy is created for this purpose. Two steps of evaluating by this method is necessary and a series of index is put forward. After initializing weights and executing genetic operation, we finally retrain the network to get the results which show that the method has fast convergence and the model reliable, effective and objective. This paper is meaningful to camouflage theory and application.

  Info
Periodical
Advanced Materials Research (Volumes 108-111)
Edited by
Yanwen Wu
Pages
1205-1210
DOI
10.4028/www.scientific.net/AMR.108-111.1205
Citation
C. He, L. Li, P. Liu, "Evaluation Model of Decoy Effectiveness Based on Improved GA-BP Neural Network", Advanced Materials Research, Vols. 108-111, pp. 1205-1210, 2010
Online since
May 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Wei Feng Wang, Jun Tao Yuan, An Lin Zhang, Meng Li
Chapter 5: Road and Bridge Engineering
Abstract:For present-day bridges.cable tensions test is a vitally important job in course of construction.The tensions condition of cables plays an...
1117
Authors: Hui Qin Sun, Zhi Hong Xue, Ke Jun Sun, Su Zhi Wang, Yun Du
Chapter 2: Manufacturing Technology
Abstract:BP neural network is currently the most widely used of neural network models in practical application in transformer fault diagnosis. BP...
789
Authors: Na Rui Bu, Run Shan Bai, Zhang Zhen Li, De Zhong Lin
Chapter 6: Vibration, Noise Analysis and Control
Abstract:Analysis of slope stability based on BP neural network, the analytical model of slope stability is built. Aiming at the defects that BP...
1263
Authors: Si Lian Xie, Tie Bin Wu, Shui Ping Wu, Yun Lian Liu
Chapter 18: Computer Applications in Industry and Engineering
Abstract:Evolutionary algorithms are amongst the best known methods of solving difficult constrained optimization problems, for which traditional...
2846
Authors: Jian Xue Chen, Shui Yu
Chapter 4: Mechatronics and Automation Manufacturing Systems, Control Technologies
Abstract:Combining ant colony optimization (ACO) algorithm with back-propagation (BP) algorithm, the ACO-BP algorithm is proposed to optimize shift...
553