Paper Title:
Microwave Permittivity of Multi-Walled Carbon Nanotubes
  Abstract

The microwave permittivity of multi-walled carbon nanotubes blended in paraffin wax has been studied in the frequency range from 2 to 18GHz. The dissipaton factors of the multi-walled carbon nanotubes are high at the microwave frequencies. The microwave permittivity of the multi-walled carbon nanotubes and paraffin wax (or other dielectric materials) composites can be tailored by the content of the carbon nanotubes. And ε′, ε″and tgδ of the composites increase with the volume filling factor (v) of the carbon nanotubes. The ε′ and ε″ of the multi-walled carbon nanotubes decrease with frequency in the frequency range from 2 to18 GHz. This property is very good for broadband radar absorbing materials. The classical effective medium functions can not effectively model the microwave permittivities of the composites containing multi-walled carbon nanotubes. The ε′ and ε″ can be effectively modeled using second-order polynomials (ε′, ε″=Av2+Bv+C). The high ε″ and dissipation factor tgδ (ε″/ε′) of multi-walled carbon nanotubes are due to the dielectric relaxation. The carbon nanotubes composites would be a good candidate for microwave absorbing material electromagnetic interface (EMI) shielding material.

  Info
Periodical
Advanced Materials Research (Volumes 11-12)
Main Theme
Edited by
Masayuki Nogami, Riguang Jin, Toshihiro Kasuga and Wantai Yang
Pages
559-562
DOI
10.4028/www.scientific.net/AMR.11-12.559
Citation
X. L. Liu, D. L. Zhao, "Microwave Permittivity of Multi-Walled Carbon Nanotubes", Advanced Materials Research, Vols. 11-12, pp. 559-562, 2006
Online since
February 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Fa Qin Dong, Qiong Si
Abstract:The electromagnetic shielding properties of short carbon fibers and graphite concrete were investigated, and the influence of the contents of...
4297
Authors: Zhao Yong Ding, Bao Min Sun, Yong Hong Guo, Bin Jia, Jin Sheng Bi
Abstract:Pyramid sharp pyrolysis flame is a new method for carbon nanotubes synthesis. Oxy-acetylene flame outside the frustum of pyramid sharp...
572
Authors: Jian Bao Hu, Shao Ming Dong, Xiang Yu Zhang, Zhi Hui Hu, Bo Lu, Jin Shan Yang, Qing Gang Li, Bin Wu
Chapter 2: Engineering Ceramics and Ceramic Composites
Abstract:Surface modification of carbon fibers(CF) by physicochemical methods directs an attractive approach for improvement of metal uptake from...
761
Authors: Shu Xian Wu, Fu Yang, Shao Lin Xue, Xin Luo Zhao
Chapter 2: Micro/Nano Materials
Abstract:The field emission properties of single-wall carbon nanotubes with purity higher than 70%,which were produced by dc arc discharge evaporation...
465
Authors: Sai Nan Wei, Rui Zhou Li, Li Chen, Ji Ming Yao
Chapter 7: Physics and Chemistry Materials and Technology
Abstract:Electromagnetic parameters and absorbing properties of fiber absorbents (carbon fiber, SiC fiber and polycrystalline iron fiber) were...
835