Paper Title:
Model and Simulation of Fluid Hydrodynamic Pressure at the Cutting Zone Considering the Surface Roughness
  Abstract

The theoretical hydrodynamic pressure modeling were presented for flow of coolant fluid through the grinding zone in flood delivery grinding using roughness surface grinding wheel. The simulation results show that the hydrodynamic pressure was proportion to grinding wheel velocity, and inverse proportion to the minimum gap between wheel and work surface and the maximum pressure value was generated just in the minimum gap region in which higher fluid pressure gradient occuring. It can also be concluded the surface roughness of grinding wheel and workpiece makes the contact zone’s hydrodynamic pressure rough and unstable, i.e. the value curve considering roughness is not smooth, leading to the micro-elastohydrodynamic lubrication phenomenon.

  Info
Periodical
Advanced Materials Research (Volumes 118-120)
Edited by
L.Y. Xie, M.N. James, Y.X. Zhao and W.X. Qian
Pages
655-659
DOI
10.4028/www.scientific.net/AMR.118-120.655
Citation
C. H. Li, Y. Zhou, G. Q. Cai, "Model and Simulation of Fluid Hydrodynamic Pressure at the Cutting Zone Considering the Surface Roughness", Advanced Materials Research, Vols. 118-120, pp. 655-659, 2010
Online since
June 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Cong Mao, Zhi Xiong Zhou, De Wang Zhou, Du Yi Gu
Abstract:In order to understand the grinding mechanism and analyze the grinding operation, it is necessary to study the contact phenomena between...
128
Authors: Suo Xian Yuan, Xi Ying Liu, Guang Qi Cai, Jin Ping Shao
Abstract:It is innovative to combine abrasive jet machining and conventional grinding together in this thesis. And it realizes a new sort of grinding...
474
Authors: Wan Shan Wang, Chong Su, Tian Biao Yu, Li Da Zhu
Abstract:Based on virtual reality technology, a friendly human-computer interaction interface and virtual machining environment were developed by...
216
Authors: Jian Qiu, Ya Dong Gong, Yue Ming Liu, J. Cheng
Abstract:Separating the workpiece velocity on the plane of grinding wheel, it is helpful to analyze Quick-point grinding mechanism. There are some...
75
Authors: Q.S. He, Y.C. Fu, Jiu Hua Xu, B.F. Zhang
Chapter 1: Material Properties and Manufacturing Technologies
Abstract:A three dimension heat transfer model, using a commercial code Fluent software which was based on FEM, was developed to describe the grinding...
156