Paper Title:
Surface Roughness and Morphology of Titanium Plate Ground with Fixed and Loose Brown Alumina Abrasives
  Abstract

Titanium is a metal material which has many excellent properties; it has been widely used in many fields. In this paper, plane abrasive machining is carried out for Titanium plate. The surface roughness and morphology of Ti-plate is compared after fixed and loose abrasive machining. The experiment proved that the drop magnitude of Ra in loose abrasives machining is great larger than that in fixed abrasive when grit size is nearly equal, and the improvement of surface defect such as some directional marks, deep scratch and bits in loose abrasives machining is rapider and quicker than that in fixed abrasives during same machining time. The results of experiments indicts that loose abrasive machining is better than fixed abrasive in reducing surface roughness and improving surface morphology, since the higher density of active abrasives and machining force uniformity.

  Info
Periodical
Advanced Materials Research (Volumes 126-128)
Edited by
Yunn-Shiuan Liao, Chao-Chang A. Chen, Choung-Lii Chao and Pei-Lum Tso
Pages
1019-1022
DOI
10.4028/www.scientific.net/AMR.126-128.1019
Citation
Q. L. Han, W. M. Zhang, "Surface Roughness and Morphology of Titanium Plate Ground with Fixed and Loose Brown Alumina Abrasives", Advanced Materials Research, Vols. 126-128, pp. 1019-1022, 2010
Online since
August 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Suo Xian Yuan, Yun Xia Hao
Abstract:In recent years, the demands on product performance are improving, particularly in the aviation; electronics, precision instruments and other...
713
Authors: Ya Li Hou, Chang He Li, Yu Cheng Ding
Abstract:Based on the modeling and experiments concerning the surface roughness in abrasive jet finishing with grinding wheel as restraint, the effect...
975
Authors: Qian Fa Deng, Ping Zhao, Bing Hai Lv, Ju Long Yuan, Zhi Wei Wang
Chapter 1: Grinding Technology
Abstract:Abrasive machining is an important process for the manufacturing of advanced ceramics. The demand for advanced ceramics with better quality...
251
Authors: Heng Zhen Dai, Zhu Ji Jin, Shang Gao, Z.C. Tao
Chapter 1: Grinding Technology
Abstract:Aiming at the severe surface/subsurface damage of Al2O3ceramic ground by diamond grinding wheel, the...
270
Authors: Qiu Yun Huang, Lei Guo, Ioan Marinescu
Chapter 1: Advanced Machining Technologies and Surface Engineering
Abstract:Ultraviolet-cured resin bond, abrasive tools have been studied and have proven to have substantial advantages over conventional abrasive...
21