Paper Title:
Tool Life and Surface Roughness of FCD 700 Ductile Cast Iron when Dry Turning Using Carbide Tool
  Abstract

Machining is one of the most important processes in producing automotive component such as difficult-to-cut FCD700 cast iron grade. Efforts are continuously made to improve the machining technique for the benefit of human and environment. This paper presents an environmental friendly when turning FCD700 cast iron using carbide tool in the absent of coolant. The turning process was carried out in three medium of dry conditions i.e. without air, chilled air and normal air. The turning parameters studied were cutting speed (100-300 m/min), feed rate (0.1-0.4 mm/rev), and depth of cut (0.2-2.0 mm). Result shows that the average surface roughness (Ra) was greatly affected by the feed rate and the effect of depth of cut was negligible. Low Ra value was produced when using high cutting speed, especially at medium air temperature of 10 deg C. Whereas when turning at high depth of cut and high feed rate, the tool life was shorten drastically. In addition, the cutting speed was significantly affecting the tool life. The tool life was found to be inversely proportional with the cutting speed. The longest tool life was obtained at cutting speed of 100 m/min, feed rate of 0.15 mm/rev, depth of cut of 0.2 mm and temperature of -2 deg C. Generally, chilled air at temperature of -2deg C will increase the tool life, but the Ra obtained was deteriorated when compared at higher temperature of chilled air and without air cutting environment. Therefore, these findings can be used a guide depending on the preference of the user, either to obtain a better tool life or Ra value.

  Info
Periodical
Advanced Materials Research (Volumes 126-128)
Edited by
Yunn-Shiuan Liao, Chao-Chang A. Chen, Choung-Lii Chao and Pei-Lum Tso
Pages
347-352
DOI
10.4028/www.scientific.net/AMR.126-128.347
Citation
J. A. Ghani, M. N. A. Mohd Rodzi, K. Othman, C. H. Che Haron, "Tool Life and Surface Roughness of FCD 700 Ductile Cast Iron when Dry Turning Using Carbide Tool", Advanced Materials Research, Vols. 126-128, pp. 347-352, 2010
Online since
August 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yuan Liang Zhang, Zhi Min Zhou, Zhi Hui Xia
Abstract:Ultrasonic vibration is applied to diamond turning of special stainless steel to decrease diamond tool wear and improve the surface quality...
57
Authors: José Vitor C. Souza, Maria do Carmo de Andrade Nono, Rodrigo de Matos Oliveira, M.V. Ribeiro, Olivério Moreira Macedo Silva
Abstract:During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is...
598
Authors: Yuan Wei Wang, Song Zhang, Jian Feng Li, Tong Chao Ding
Abstract:In this paper, Taguchi method was applied to design the cutting experiments when end milling Inconel 718 with the TiAlN-TiN coated carbide...
911
Authors: Yue Feng Yuan, Wen Ying Zhang, Xing Chang
Chapter 6: New Materials and Advanced Materials
Abstract:Cutting force experiments in turning aluminum-silicon alloy ZL104 are carried out with cement carbide tool YG8. The influence of cutting...
971