Paper Title:
A Practical Investigation into Acoustic Wave Propagation in Concrete Structures
  Abstract

Acoustic Emission (AE) testing in concrete structures shows great potential for monitoring and assessing the health condition of structures. Source location is normally based on the arrival times of transient signals, the simplest method is known as the Time of Arrival (TOA) method, where the location of the damage can be determined from the arrival time of the event at two or more sensors. When using this method, the wave velocity of the signals that propagate through the material needs to be determined. Homogenous materials, such as steel, have welldefined velocities, but in non-homogeneous materials such as concrete the wave velocity is more difficult to predict. This makes the use of a single wave velocity as required in the TOA method very difficult due to the variety of wave velocities obtained, especially for large structures. This paper explores wave propagation in concrete structures over a variety of source to sensor distances. Experiments were performed on a reinforced concrete beam and a reinforced concrete slab, using an Hsu-Nelsen (H-N) Source. It is found that, in general, as the source to sensor distance increases, the wave velocity decreases. The presence of longitudinal and transverse waves is demonstrated and the influence of the part of the waveform used for temporal measurement is explored. In order to provide a practical approach to velocity determination, different thresholds are investigated and the results are discussed in relation to the wave modes present.

  Info
Periodical
Advanced Materials Research (Volumes 13-14)
Edited by
R. Pullin, K.M. Holford, S.L. Evans and J.M. Dulieu-Barton
Pages
205-212
DOI
10.4028/www.scientific.net/AMR.13-14.205
Citation
M. B. Norazura, R. Pullin, K. M. Holford, R.J. Lark, "A Practical Investigation into Acoustic Wave Propagation in Concrete Structures", Advanced Materials Research, Vols. 13-14, pp. 205-212, 2006
Online since
February 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Wen Hui Bai
Abstract:This paper mainly studies the deflection under short-term loading of recycled course aggregate reinforced concrete beam is calculated by...
1443
Authors: Seung Hyun Ryu, Young Oh Lee, Sun Woo Kim, Hyun Do Yun
Abstract:Acoustic emission (AE) is a powerful nondestructive test that can be used to characterize cracking, growth of cracks, and the degree of...
2528
Authors: Xiao Yan Liu, Kai Qiong Liu, Ai Hua Liu
Abstract:With liquid as transmission medium, using ultrasonic precision measurement, an effective device was studied and developed for monitoring...
552
Authors: Kao Zhong Zhao, Feng Wang, Xiao Feng Bian
Chapter 1: Civil Engineering
Abstract:The concrete-filled glass fiber reinforced gypsum wall panel is a kind of panel that the inside cavums of the glass fiber hollow gypsum panel...
16