Paper Title:
Use of the Aging Effect to Change the Local Properties of Structure Components
  Abstract

This research deals with processes leading to local strengthening effects in Advanced High Strength Steels (AHSS). Dual phase (DP), retained austenite (RA) - both hot and cold rolled - and complex phase (CP) steels have been investigated to examine the effect of thermal and mechanical processing parameters on local properties. For this purpose, a method has been investigated to achieve local strengthening, namely local deformation and local heat treatment. Samples were locally deformed by bending and embossing processes. A local deformation with defined pre-strains leads to enhanced hardness and strengthening. A subsequent aging treatment leads to a further increase in mechanical properties. Local heat treatment was applied using a laser and an electron beam. Following local heat treatment with selected parameters, the microstructure of the surface and the cross section as well as the mechanical properties were evaluated by light optical, scanning as well as transmission electron microscopy, hardness measurement, tensile testing and thermal modelling. It can be stated that with partial heat treatment, local high strengthening can be produced. At lower heat treating temperatures, this effect could be attributed to bake hardening. With increased heat treating temperature, the initial microstructure near the surface is affected. A model can be improved, which defines the correlation between the influencing parameters and the local properties. The influence of over-aging in locally strengthen regions has been studied. For this investigation, parameters are stable to locally adjust the strengthening effect. Partial strengthening of AHSS by local deformation or local heat treatment can open up new fields of applications for locally using the strengthening effect to only influence relevant areas of interest, thus providing the potential for saving energy and designing the component’s behaviour.

  Info
Periodical
Edited by
Heinz Palkowski and Kai-Michael Rudolph
Pages
35-79
DOI
10.4028/www.scientific.net/AMR.137.35
Citation
M. Asadi, N. Schulze, H. Palkowski, "Use of the Aging Effect to Change the Local Properties of Structure Components", Advanced Materials Research, Vol. 137, pp. 35-79, Oct. 2010
Online since
October 2010
Share
Authors: Carlos García-Mateo, Francisca García Caballero, Harshad K.D.H. Bhadeshia
Abstract:The mechanical properties of a bainitic microstructure with slender ferrite plates (20-65 nm in thickness) in a matrix of carbon-enriched...
495
Authors: Stéphane Godet, C. Georges, Pascal J. Jacques
Abstract:TRIP-assisted multiphase steels exhibit an excellent balance of strength and ductility, which makes them very attractive for the automotive...
4333
Authors: Jian Kang, Guo Yuan, Zhao Dong Wang
Abstract:The new generation TMCP process based on ultra fast cooling has recently developed rapidly. In order to develop the low yield ratio...
505
Authors: Li Hui Wang, Di Tang, Hai Tao Jiang, Ji Bin Liu, Yu Chen
Chapter 3: Steel and Iron Technology
Abstract:Effects of continuous annealing process on microstructure and properties of Si based cold-rolled TRIP Steel were studied. The results show...
472
Authors: Druce P. Dunne, W. Pang
Chapter 6: Mechanical Behavior, Shape Memory Effect, Pseudoelasticity and Other Functional Properties in Fe-Based and Other Alloys
Abstract:Welding of low carbon martensitic steels with yield strengths above 690 MPa requires careful attention to the welding procedure to avoid...
206