Paper Title:
Fiber Optic Displacement Monitoring in Laboratory Physical Model Testing
  Abstract

For physical models, conventional techniques have difficulties in monitoring internal displacements during laboratory testing. In this paper, based on fiber Bragg grating (FBG) sensing technology, a bar-type fiber optic displacement sensor is developed for small-scale models. When the model deforms due to loading or unloading, the embedded displacement sensor can capture the displacement profile along the bar length using the strain data from quasi-distributed FBGs. Laboratory calibration tests have showed that the displacements measured by the FBG sensing bar are in good agreement with those from conventional displacement transducers. For the physical models of a gravity dam and a cavern group, the FBG sensing bars were successfully installed in predefined holes, together with conventional gauges. During testing, the FBG sensing bars measured the displacement distributions within the models. The fiber optic monitoring results demonstrate the deformation characteristics of surrounding rock masses induced by overloading and underground excavation and indicate the overall stability conditions of these two geo-structures.

  Info
Periodical
Advanced Materials Research (Volumes 143-144)
Edited by
H. Wang, B.J. Zhang, X.Z. Liu, D.Z. Luo, S.B. Zhong
Pages
1081-1085
DOI
10.4028/www.scientific.net/AMR.143-144.1081
Citation
H. H. Zhu, J. H. Yin, H. F. Pei, L. Zhang, W. S. Zhu, "Fiber Optic Displacement Monitoring in Laboratory Physical Model Testing", Advanced Materials Research, Vols. 143-144, pp. 1081-1085, 2011
Online since
October 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Feng Yuan, Guang Ming Yu, Qian Qian Zhao, Jing Bo Zou, Xiao Ming Guan
Abstract:Underground engineering construction in the city can not avoid bringing about perturbation on the surrounding rock and soil and then endanger...
3606
Authors: Xiao Wei Li, Xue Wei Li, Xin Yuan
Chapter 1: Traditional Building Materials
Abstract:For expedite the development of high titanium heavy slag concrete, eight high titanium heavy slag high strength reinforced concrete...
455
Authors: Zhong Ling Zong, Zhen Dong Zhang, Dong Rui Yao
Chapter 9: Monitoring and Control of Structures
Abstract:Based on the analysis of the cause of destruction and damage mechanism, safety monitoring and control technology of artificial island...
2962