Paper Title:
Effects and Mechanisms of Vanadium on Structural Transformation of BVRE Heavy Rail Steel
  Abstract

The different dilatometric curves of continuous cooling transformation with the different cooling rates were determined by means of Gleeble-2000 thermal simulation machine. The CCT curve of BVRE heavy rail steel was obtained by measuring the dilatometric curves and metallographic analysis. And the effects and mechanisms of vanadium on the phase transformation and microstructure of BVRE heavy rail steel were investigated. It is found that, the BVRE heavy rail steel only takes place pearlite and martensite transformation during continuous cooling. The CCT curve of BVRE heavy rail steel is moved to lower right with increasing vanadium content, which indicates that vanadium can obviously improve the stability of super cooled austenite and delay the pearlite transformation. When the content of vanadium is increased from 0.052% to 0.12%, the shortest incubation time of pearlite transformation is increased from 30s to 59s. When the cooling rate ≤ 5 ·s-1, with increasing vanadium content, both starting and finishing temperatures of pearlite transformation are decreased at different extent, meanwhile the pearlite is refined and the pearlite percentage is notably decreased. When the cooling rate is 2 ·s-1, the pearlite percentage is decreased from 65.7% to 35.9% with increasing vanadium content. When the content of vanadium is increased from 0.052% to 0.12%, the critical cooling rate of quenching is decreased from 13 ·s-1 to 7 ·s-1, thus the hardenability of BVRE heavy rail steel is improved.

  Info
Periodical
Advanced Materials Research (Volumes 146-147)
Edited by
Sihai Jiao, Zhengyi Jiang and Jinglong Bu
Pages
1216-1221
DOI
10.4028/www.scientific.net/AMR.146-147.1216
Citation
Y. H. Huang, C. J. Liu, M. F. Jiang, "Effects and Mechanisms of Vanadium on Structural Transformation of BVRE Heavy Rail Steel", Advanced Materials Research, Vols. 146-147, pp. 1216-1221, 2011
Online since
October 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Young Kook Lee, Jin-Myung Hong, Chong Sool Choi, Jae Kon Lee
Abstract:Effects of niobium content and cooling rate on ferrite and bainite start temperatures (Ar3, Bs) and microstructural features have been...
65
Authors: Dong Yu Liu, Shi Xiang Hou, Ye Yuan, Bing Zhe Bai, Zong De Liu, Hong Xu, Jian Chao Peng
Abstract:The air cooling rate of the Low Carbon Mn-Si-Cr steel bar with different diameter after austenitizing at 910oC and 960oC was simulated by...
527
Authors: An Chao Ren, Yu Ji, Gui Feng Zhou, Ze Xi Yuan, Bin Han, Yi Li, Jing Yang
Abstract:The dilatation curves of continuous cooling transformation at different cooling rates were determined for U75V rail steel by THERMECMASTOR-Z...
310
Authors: Xin Jie Di, Dan Xu, Yong Chang Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The microstructure and carbide precipitate of simulated coarse grain heat affected zone(CGHAZ) in modified high Cr ferritic heat-resistant...
1320
Authors: Le Yu Zhou, Ya Zheng Liu, Lian Hong Yang, Dan Zhang
Chapter 3: Iron and Steel
Abstract:Thermal mechanical experiment of step-cooling of 600MPa hot-rolled DP steel after compressed was carried out on Gleeble-1500 thermal...
938