Paper Title:
Investigation of the Laser Melting Deposited TiAl Intermetallic Alloy on Titanium Alloy
  Abstract

To improve the wear resistance of Titanium alloy, TiAl intermetallic claddings were fabricated on TC4 substrate using laser melting deposition technology. Optical microscope, scan electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction meter were applied to investigate the deposited TiAl layer and their interface with substrate. Using hardness tester and M-2000 wear testing machine, hardness, frictional coefficient and wear resistance of the TiAl layers and TC4 alloy were tested. It was indicated that the deposited TiAl layers were well integrated with TC4 substrate, γ-TiAl and Ti3Al dual phase microstructure was formed in the deposited layer. With higher hardness and lower friction coefficient, the deposited TiAl layer improved the wear resistance obviously comparing to TC4 titanium alloy substrate.

  Info
Periodical
Advanced Materials Research (Volumes 146-147)
Edited by
Sihai Jiao, Zhengyi Jiang and Jinglong Bu
Pages
1638-1641
DOI
10.4028/www.scientific.net/AMR.146-147.1638
Citation
Y. B. Zhang, H. X. Li, K. Zhang, "Investigation of the Laser Melting Deposited TiAl Intermetallic Alloy on Titanium Alloy", Advanced Materials Research, Vols. 146-147, pp. 1638-1641, 2011
Online since
October 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Cui Li, Wei Qi, Kutsuna Muneharu
Abstract:A zircon coating was applied on the surface of Ti-6Al-4V alloy by plasma spray and its effect on the high temperature tensile properties of...
547
Authors: Xiao Ping Luo, Lan Ting Xia, Ming Gang Zhang
Abstract:The effect of Cd and Sb addition on the microstructural and mechanical properties of as-cast AZ31 alloys was investigated and compared. The...
197
Authors: Sheng Zhu, Guo Feng Han, Xiao Ming Wang, Wen Bo Du
Chapter 1: Composites
Abstract:In this study, Al-Si alloy protective coating was deposited on the surface of ZM5 magnesium alloy by cold spray technology. Researchers...
142
Authors: Hsi Hsin Chien, Kung Jeng Ma, Chien Hung Kuo
Chapter 3: Mechanical Engineering and Manufacturing
Abstract:Glass molding process provides a great potential for the production of precise glass optical components at low cost. The platinum-iridium...
533
Authors: Xiao Ming Wang, Sheng Zhu, Qing Chang, Guo Feng Han
Chapter 6: Engineering Materials and Functional Materials
Abstract:In order to protect magnesium alloy structure used in equipments, Al-based alloy coating on ZM5 magnesium alloy surface was prepared by...
756