Paper Title:
Estimation of the System Free Energy of the Lath Martensite Phase in High Cr Ferritic Steels
  Abstract

The system free energy was estimated for the martensite phase of an Fe-Cr-C ternary alloy, 12Cr2W and 12Cr2W0.5Re steels. The system free energy of the martensite phase is defined as, Gsys = G0 + Estr + Esurf , where G0 is the chemical free energy, Esurf is the interfacial energy for the boundaries in the martensite microstructure, and Estr is the elastic strain energy due to the dislocations in the martensite phase. From the experimental results on SEM/EBSD, the total interfacial energies were estimated to be 0.83J/mol for the ternary alloy and 4.8J/mol for both 12Cr2W and 12Cr2W0.5Re steels in the as-quenched state. Also, the elastic strain energies were estimated to be 7.1J/mol for the ternary alloy, 9.6J/mol for 12Cr2W steel and 9.8J/mol for 12Cr2W0.5Re steel in the as-quenched state. So, the system free energy was about 7.9J/mol for ternary alloy. On the other hand, the system free energy was about 14.4J/mol for 12Cr2W steel and 14.6J/mol for 12Cr2W0.5Re steel. So, these microstructural energies operate as a driving force for the microstructure evolution, e.g., recovery of dislocations and the coarsening of the sub-structures such as martensite-packet, -block and -lath.

  Info
Periodical
Advanced Materials Research (Volumes 15-17)
Edited by
T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran
Pages
690-695
DOI
10.4028/www.scientific.net/AMR.15-17.690
Citation
T. Kunieda, K. Akada, Y. Murata, T. Koyama, M. Morinaga , "Estimation of the System Free Energy of the Lath Martensite Phase in High Cr Ferritic Steels", Advanced Materials Research, Vols. 15-17, pp. 690-695, 2007
Online since
February 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Naoki Maruyama, T. Ogawa, M. Takahashi
Abstract:Subgrain growth in deformed ferrite and incomplete recrystallisation during intercritical annealing in low carbon (LC) steels was...
247
Authors: L. González-Legarreta, M. Ipatov, D. González-Alonso, Alexander P. Kamantsev, Victor V. Koledov, Vladimir G. Shavrov, B. Hernando
Chapter 3: Magnetic Alloys and Magnetocaloric Effect
Abstract:We report on the influence of short annealing treatments at 923 K and 1073 K during 10min on both martensitic transformation and exchange...
179
Authors: Kazumasa Kubota, Masahito Ueda, Hideki Nakagawa
Chapter 2: Contributed Papers
Abstract:The effect of the prior austenite grain size on the yielding behavior of as-quenched low-C martensitic stainless steel was investigated....
1031