Paper Title:
Physically Based Model for Static and Dynamic Behaviour of TRIP Steel
  Abstract

Low alloy multiphase TRansformation Induced Plasticity (TRIP) steels offer an excellent combination of a large uniform elongation and a high strength. This results from the composite behaviour of the different phases that are present in these steels: polygonal ferrite, bainitic ferrite and a martensite/austenite constituent. In order to obtain a clear understanding of the behaviour of the different constituents within the multiphase steel, they were prepared separately. The stress-strain relationship of the different single phase and multiphase steels were simulated with physically based micromechanical models. The model used to describe the stress-strain curves of the separate phases is based on the Mecking-Kocks and Seeger-Kocks theories and uses physical properties such as the microstructural properties and the chemical composition of the different phases. Strain-induced transformation kinetics, based on a generalized form of the Olson-Cohen law, were used to include the influence of the transformation of the metastable austenite. Static stress-strain properties of multiphase steels were modelled by the successive application of a Gladman type mixture law for two-phase steels. The model yields detailed information of stress and strain partitioning between the different phases during a static tensile test. A model for the dynamic stress-strain properties of ferritic steels is also proposed.

  Info
Periodical
Advanced Materials Research (Volumes 15-17)
Edited by
T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran
Pages
744-749
DOI
10.4028/www.scientific.net/AMR.15-17.744
Citation
J. Bouquerel, K. Verbeken, B. C. De Cooman, Y. Houbaert, P. Verleysen, J. Van Slycken, "Physically Based Model for Static and Dynamic Behaviour of TRIP Steel", Advanced Materials Research, Vols. 15-17, pp. 744-749, 2007
Online since
February 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Klaus Hulka
Abstract:In the recent years several new high strength steel grades have been developed, which exhibit improved cold formability and thus are...
91
Authors: Carlos García-Mateo, Francisca García Caballero, Harshad K.D.H. Bhadeshia
Abstract:The mechanical properties of a bainitic microstructure with slender ferrite plates (20-65 nm in thickness) in a matrix of carbon-enriched...
495
Authors: Frank Hisker, Richard Thiessen, Thomas Heller
Chapter 7: Fracture and Mechanical Behaviour
Abstract:AHSS (Advanced High Strength Steels) combine high strength and good ductility. Their outstanding forming and work-hardening behavior...
925
Authors: Bruno Buchmayr, Thomas Antretter
Chapter 18: Steels
Abstract:The thermo-mechanical behaviour of the hot rolled dual-phase steel 10MnSi7 has been determined as a function of temperature and time within...
2072
Authors: Jie Yun Ye, Zheng Zhi Zhao, Zhi Gang Wang, Ai Min Zhao, Jing Jing Chen
Chapter 3: Iron and Steel
Abstract:C-Mn-Cr-Mo dual phase steel was piloted in laboratory. OM, SEM, tensile tests and XRD were used to characterize the microstructures,...
670