Paper Title:
Change in Stress Axis with Creep Deformation in Ni-20mass%Cr Single Crystal with Orientation of [011]
  Abstract

The features of the creep deformation of γ-single phase single crystals with the composition of Ni-20mass%Cr are characterized by the extended transient stage, which consists of Stage I and Stage II. In the Stage I, the creep rate just after loading remains unchanged, while the creep rate decreases continuously in Stage II. In the single crystals except for the single crystals with the stress axis of [001] and [1, – 11], the predominant creep deformation using the primary slip plane continues. By this deformation, the cross section of specimen turns to elliptical in shape. However, in the single crystals with the angle between stress axis and primary slip plane (111) is more than 45°, the deformation using the primary slip plane does not continue, as a result, the duration of Stage II turn to shorter one. The single crystal with the stress axis of [011] has the largest angle of 55°. In this study, the deformation manner during transient stage of single crystal with the stress axis of [011] orientation is investigated from the two viewpoints. The first one is to clarify the change in deformation manner with decreasing the stress. As a result, with decreasing the stress, the Stage I become clear and strain during Stage I and Stage II become small, furthermore, the decreasing ratio of creep rate with definite strain becomes larger. While, the second viewpoint is to investigate the change in crystallographic orientation of the [011] single crystals with creep deformation using the inverse pole figure obtained by the EBSD method. As a result, at the stress of 29.4 MPa, the spot of stress axis turns from the [011]-[1, – 11] line to the <1, – 01> direction. While, at the stress of 19.6 MPa, the stress axis moves for the [1, – 11] pole along the [011]-[1, – 11] line from the [011] pole. And, it is noteworthy that the spot widely spread from the [011] pole during transient stage. This indicates the large distortion in the primary slip plane and the evidence of heterogeneous deformation.

  Info
Periodical
Advanced Materials Research (Volumes 15-17)
Edited by
T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran
Pages
870-875
DOI
10.4028/www.scientific.net/AMR.15-17.870
Citation
M. Mitsutake, Y. Terada, T. Matsuo, "Change in Stress Axis with Creep Deformation in Ni-20mass%Cr Single Crystal with Orientation of [011]", Advanced Materials Research, Vols. 15-17, pp. 870-875, 2007
Online since
February 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: X.B. Wang
Abstract:The stress distribution on the midsection of a pure bending beam where tensile strain localization band initiates on the tensile side of the...
253
Authors: Masamichi Kawai, Jian Qi Zhang
Abstract:A macromechanics constitutive model to describe the anisotropic creep behavior of unidirectional composites under off-axis loading...
161
Authors: Thomas M. Holden
Abstract:Hexagonal close-packed and lower symmetry metals often exhibit anisotropic mechanical properties because the dominant slip system forbids...
77
Authors: Mao Liang Wu
Abstract:The paper discusses CAD design on the pores created with simple units such as cylinder, whose structures are determined by unit space array...
2224
Authors: Wen Qing Wu, Xue Yuan Ma, Shuai Chen
Chapter 4: Novel Constructional Materials and Functional Materials, Analysis and Technology
Abstract:The compressive mechanical performance of bamboo strip plywood was studied in the paper. Based on analysis of the related experiments datum ,...
640