Paper Title:
The Refinement of Grain Structure in a High-Purity α-Iron Base Alloy under Multiaxial Compression
  Abstract

Multiaxial compression (MAC) is a severe plastic deformation (SPD) method that allows sequential uniaxial compression of prismatic samples to relatively large cumulative strains. The technique involves a change in loading direction (x to y to z to x…) between successive compression passes. A high-purity α-iron containing 60 mass ppm C was thus strained using passes of ε ∼ 0.4 at room temperature (0.16 Tm) and 450 °C (0.40 Tm) to total ε ranging from 1.4 to 2.9. Both optical and electron microscopy were used to characterise the deformed microstructures. Fragmentation of the initial grain structure occurs mainly in the form of a dense, homogeneous network of low angle boundaries (LAB) delimiting subgrains of about 1 3m. The original grains are easily distinguishable and maintain a relatively equiaxed appearance even at larger strains. At room temperature, high angle boundaries (HAB) are observed within some of the initial grains, and not necessarily close to the grain boundaries. These HAB may be open or closed, and tend to align themselves at approximately 45° to the orthogonal axes, suggesting the presence of microshear bands and thus a heterogeneous deformation. Such bands of localised strain criss-cross as a result of different slip systems being activated from one pass to another. When the temperature is increased to 450 °C, grain boundary migration becomes significant owing to the lack of impurities that could otherwise provide a pinning effect. The resultant subgrain structure is coarsened to about 4 3m. Besides, the enhancement of recovery at higher temperatures also appears to discourage the generation of HAB by dislocation accumulation processes.

  Info
Periodical
Advanced Materials Research (Volumes 15-17)
Edited by
T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran
Pages
900-905
DOI
10.4028/www.scientific.net/AMR.15-17.900
Citation
S.M. Lim, M. El Wahabi, C. Desrayaud, F. Montheillet, "The Refinement of Grain Structure in a High-Purity α-Iron Base Alloy under Multiaxial Compression", Advanced Materials Research, Vols. 15-17, pp. 900-905, 2007
Online since
February 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Young Seok Song, M.R. Lee, Jeong Tae Kim
Abstract:Alloy 718 ingot with a diameter of 400mm was made by the vacuum melting process ; VIM followed by VAR. Compression tests were conducted on...
3124
Authors: J. Jiang, Andrew Godfrey, Qing Liu
Abstract:The hexagonal crystal structure of AZ31 results in a very high mechanical anisotropy and a poor formability of this alloy. In order to...
245
Authors: Feng Jian Shi, Tao Xu, Sheng Lu, Lei Gang Wang
Abstract:In this paper, effective strain and load were simulated by rigid-plastic finite element method (FEM) during cyclic channel die compression...
1300
Authors: Jia Le Sun, Rui Chun Li, Gao Feng Quan, Zhao Ming Liu
Chapter 9: Environmental Friendly Materials
Abstract:The microstructure, surface morphology, compression properties, deformation behaviour and strain hardening exponent of as-cast and...
1960
Authors: Bao Guo Yuan, Qiang Chen, Hai Ping Yu, Ping Li, Ke Min Xue, Chun Feng Li
Chapter 2: Material Science and its Application
Abstract:Compression tests of the hydrogenated Ti6Al4V0.2H alloy were carried out using an Instron 5569 machine at room temperature. True...
517