Paper Title:
Strain Path Effects on Titanium Alloy Timetal-834 under Hot Working Conditions
  Abstract

The effects of strain path reversal under hot working conditions on the microstructure and crystallographic texture in the near-α titanium alloy Timetal-834 have been studied using high resolution electron backscatter diffraction (EBSD). The main objective of the work was to investigate the potential effect strain path may have on breaking up the well known clustering of similarly orientated primary alphas grains in the alloy, which significantly reduces its low cycle dwell fatigue lifetime. Deformation was carried out using forward torsion to an equivalent strain of 0.9 and forward/reverse torsion of two equal steps to produce a total strain of 0.9. The tests were performed at a typical industrial forging condition of 990°C (~50% alpha, ~50% beta) at an equivalent tensile strain rate of 2s-1. Investigation of the microstructure showed the primary alpha grains to align with the direction of torsion for the forward test and return to an equiaxed shape on strain reversal, though a significant numbers of deformation twins are formed and retained after the full strain reversal. Analysis of the texture of the starting material showed the typically clustering of primary alpha grains, which upon forward torsion and forward/reverse torsion did not break down. This indicates that during a typical forging operation the clustering of similarly orientated primary alpha grains inherited from the as-received billet will not be reduced. This suggests that improved in-service performance of this alloy can only be achieved by reducing the clustering upstream in the manufacture of the billet.

  Info
Periodical
Advanced Materials Research (Volumes 15-17)
Edited by
T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran
Pages
959-964
DOI
10.4028/www.scientific.net/AMR.15-17.959
Citation
M.L. Blackmore, B. P. Wynne, J. H. Beynon, P. S. Davies, "Strain Path Effects on Titanium Alloy Timetal-834 under Hot Working Conditions", Advanced Materials Research, Vols. 15-17, pp. 959-964, 2007
Online since
February 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: Pablo Rodriguez-Calvillo, Yvan Houbaert
Abstract:High silicon steel is used for electrical applications because its electrical resistivity is increased and the magnetostriction is reduced....
15
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: Xu Dong Zhou, Xiang Ru Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The researches of non-oriented silicon steel are mainly focused on the effect of main processing parameters on the microstructure and...
1468