Paper Title:
Atomic Force Microscopy and X-Ray Photoelectron Spectroscopy Study on the Surface and Interface States of Liq and ITO Films
  Abstract

An understanding of the surface and interface states of the organic material and the underlying andoe material is meaningful for organic light-emitting devices (OLEDs). The 8-Hydroxyquinolinolatolithium (Liq) was deposited on indium-tin-oxide (ITO) coated glass by traditional vacuum evaporation.The thickness of Liq is about 120nm. The morphology, surface and interface electron states of the Liq and the underlying ITO have been investigated with the utilization of the atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) technology. AFM observation indicated that Liq grows in the shape of an asymmetrically-distributed island, with each island resembling a round hillock and different size. The Liq film is not very uniform and teemed with many pinholes and cracks.The analysis on XPS spectra of the surface of the Liq/ITO samples shows that, the core-levels of Li1s, C1s, N1s, O1s, In3d5/2, and Sn3d5/2, spectra slightly shift towards lower binding energy with the increase of the sputtering time, which may be caused by the effect of oxygen, indium and tin in ITO diffusing into Liq layer and the argon ions beam with energy. Coordination bond between Li atoms and N atoms does not exist in Liq, which is the main reason why Liq is the blue electroluminescent material. The C atoms mainly bond to C, N and O atoms, forming C-C, C-N=C and C-O bonds, respectively. And there is a speculation of the existence of contaminated C atoms in the surface of ITO, while the O atoms basically originate from quinolate rings and the absorption of O2 and H2O. At the interface N and O, In and Sn interact to some extent, which probably affects the emitting colour of Liq based OLEDs. The analysis of surface of In3d and Sn3d spectrum by XPS provides additional evidence of the existence of cracks and pinholes in Liq layer, leading to much absorption of air molecules.

  Info
Periodical
Advanced Materials Research (Volumes 152-153)
Edited by
Zhengyi Jiang, Jingtao Han and Xianghua Liu
Pages
566-571
DOI
10.4028/www.scientific.net/AMR.152-153.566
Citation
J. F. Li, Q. Song, W. B. Shi, F. J. Zhang, "Atomic Force Microscopy and X-Ray Photoelectron Spectroscopy Study on the Surface and Interface States of Liq and ITO Films", Advanced Materials Research, Vols. 152-153, pp. 566-571, 2011
Online since
October 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Kenkichiro Kobayashi, Tsutomu Yamazaki, Yuji Hatta, Yasumasa Tomita
79
Authors: Zheng Han Hong, Shun Fa Hwang, Te Hua Fang
Abstract:The mixing situation of Co atoms implanting onto Cu(001) substrate is investigated with regard to incident energy and substrate temperature...
375
Authors: Liang Yan Chen, Xi Qu Chen, Dao Li Zhang
Abstract:Theoretical studies of ZnSe epitaxy growth on GaA (001) surface were performed with first principle calculation, the bonding energy of...
860
Authors: Jen Ching Huang, Yi Chia Liao, Huail Siang Liu, Fu Jen Cheng
Chapter 1: Nanoscience and Nanotechnology
Abstract:This paper studies the deposition process and mechanical properties of Cu thin films deposited on single crystal copper substrates with...
37