Paper Title:
Tests on High-Velocity Forming of AZ31 Magnesium Alloy by Explosive-Impulsive Pressure(Part I)
  Abstract

As reported in the previous report, increasing velocity by high-speed impulsive energy could improve the formability of AZ31 magnesium alloy. The improvement of ductility of AZ31 magnesium alloys can be observed, which is difficult to observe in usual cold forging techniques. This paper (Part II) is a coutinuation of the reported work in the previous paper. The forming of the AZ31 casting magnesium alloy was done. The hardness distribution of the test specimen was investigated for each experiment, and the microstructures are analyzed. The microstructural results indicate that adiabatic shear bands are formed and the microstructure is changed by the formation of huge amount of fine grained recrystallized structure. Furthermore, solid state is retained in the materials as well as the surface. [1]

  Info
Periodical
Advanced Materials Research (Volumes 154-155)
Edited by
Zhengyi Jiang, Xianghua Liu and Jinglong Bu
Pages
1077-1080
DOI
10.4028/www.scientific.net/AMR.154-155.1077
Citation
L. Q. Ruan, K. Hokamoto, Y. Marumo, I. Yahiro, "Tests on High-Velocity Forming of AZ31 Magnesium Alloy by Explosive-Impulsive Pressure(Part I)", Advanced Materials Research, Vols. 154-155, pp. 1077-1080, 2011
Online since
October 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Rimma Lapovok
Abstract:Equal Channel Angular Extrusion (ECAE) has become a very popular tool for studying the evolution of microstructure and properties under...
37
Authors: Zhi Guo Chen, Zi Qiao Zheng, Dong Feng Han
Abstract:The hot deformation behaviors and microstructure in Al-Cu-Li alloy containing small amount of Ag and Mg were investigated by transmission...
1925
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: Xu Dong Zhou, Xiang Ru Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The researches of non-oriented silicon steel are mainly focused on the effect of main processing parameters on the microstructure and...
1468