Paper Title:
Effects of Load Sequence on Fatigue Crack Growth in Pressure Vessels
  Abstract

Low alloy steels such as ASTM A508 and A533 and their equivalent materials have been extensively applied in fabricating pressure vessels due to their relatively excellent mechanical properties and moderately good weldability. The integrity of such materials governs the safety of the power plants. These vessels mainly are subjected to random loading in service and the load cycle interactions can have a significant effect in fatigue crack growth. Studying of fatigue crack growth rate and fatigue life calculation under spectrum loading is important for the reliable life prediction of vessels. Many models have been proposed, but as yet no universal model exists. In this paper, a fatigue life predicted under various load spectra, using three different fatigue crack growth models namely the Austen, modified Forman and NASGRO models. These models are validated with fatigue crack growth test data under various variable amplitude loadings. This application is performed with aids of three-point bend specimens. The results show clearly the load sequences effect and the predicted results agree with some discrepancies between the different models as well as with the test data. Neglecting, the cycle interaction effects in fatigue calculation under variable amplitude loading lead to invalid life prediction.

  Info
Periodical
Advanced Materials Research (Volumes 160-162)
Edited by
Guojun Zhang and Jessica Xu
Pages
1217-1222
DOI
10.4028/www.scientific.net/AMR.160-162.1217
Citation
S. Abdullah, S.M. Beden, A. K. Ariffin, Z. M. Nopiah, "Effects of Load Sequence on Fatigue Crack Growth in Pressure Vessels", Advanced Materials Research, Vols. 160-162, pp. 1217-1222, 2011
Online since
November 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Jia Zhen Zhang, Xiao Dong He, Shan Yi Du
Abstract:In-situ SEM observations have revealed that fatigue crack propagation in aluminium alloys is caused by the shear band decohesion around the...
293
Authors: Stanislav Seitl, Pavel Hutař, Zdeněk Knésl
Abstract:The formulations of fatigue crack growth prediction are still mostly based on phenomenological models. A commonly used formula in the field...
557
Authors: Wei Han, Da Zhao Yu, Qing He Fan
Metal alloy Materials
Abstract:The initial discontinuity state (IDS) concept was developed just several years ago in an attempt to describe the as-manufactured or...
1626
Authors: Li Hong Gao, Ge Ning Xu, Ping Yang
Structural Strength and Robustness
Abstract:The random formula on fatigue crack growth is deduced by the fatigue crack data and the improved Taguchi method, and the sample estimates of...
1277