Paper Title:
Prediction Methods for Ultimate Strengths in GFRP Reinforced Concrete Bridge Deck Slabs
  Abstract

The corrosion of reinforcement embedded in concrete bridge deck slabs has been the cause of major deterioration and of high costs in repair and maintenance. Fibre reinforced polymers (FRP) exhibit high durability in combination with high strength and light weight. The majority of research with FRP bars for reinforcing concrete has been on simply supported beams and slabs where the low value of elasticity of FRP has meant that the service behaviour has been critical. These differences have been attributed to the low value of elasticity of many FRPs compared to steel. However, laterally restrained slabs, such as those in bridge deck slabs, exhibit arching action or compressive membrane action (CMA), which has a beneficial influence on the service behaviour such as the deflection. Based on the previous research on CMA in steel reinforced concrete bridge deck slabs, a modified theoretical method were established according to the material properties of GFRP reinforcement. The proposed prediction method showed a good collection of some reported GFRP reinforced slabs experimental tests.

  Info
Periodical
Advanced Materials Research (Volumes 163-167)
Edited by
Lijuan Li
Pages
1139-1142
DOI
10.4028/www.scientific.net/AMR.163-167.1139
Citation
Y. Zheng, Y. F. Pan, "Prediction Methods for Ultimate Strengths in GFRP Reinforced Concrete Bridge Deck Slabs", Advanced Materials Research, Vols. 163-167, pp. 1139-1142, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ming Kun Yew, Othman Ismail
Abstract:The mechanical properties of hybrid nylon-steel-fiber-reinforced concrete were investigated in comparison to that of the...
1704
Authors: Xing Guo Wang, Zhao Xia Cheng, Yongchao Hao, Yi Xin Wang
Abstract:Mixing three different fiber composites into concrete specimens respectively, compressive strength, splitting tensile strength and flexural...
1976