Paper Title:
Physical Filling Effects of Limestone Powders with Different Particle Size
  Abstract

Physical filling effects of limestone powders, which are stated by compactness change of mixtures of limestone powders and cement, play an important role in the pore structure and strength of cement stone. The compactness of mixture of limestone powders and cement has been analyzed by the method of wet packing density, tested the void structure of cement stone by mercury intrusion porosimetry(MIP) and strength of cement stone. Effects of limestone powders with specific areas of individually 416m2 /kg, 841m2 /kg, 1243m2 /kg on compactness of cement, compressive strength of concrete as mineral admixture, and pore structure of cement stone were studied when its cement is substituted for the mass proportion of 5, 10, 15% with it. The results show that the compactness of powder mixtures and compressive strength of concrete are biggest, and the improvement of pore structure of cement stone is the best when limestone powder is 10%; the compactness of powder mixtures and compressive strength of concrete are bigger, and the improvement of pore structure of cement stone is better when limestone powder is finer. That is to say, the proportion of limestone powder is the best substitution at 10%; physical filling effects of limestone powder are better when limestone powder is finer from particle sizes. It is important guiding meaning for the application of limestone powder in cement materials.

  Info
Periodical
Advanced Materials Research (Volumes 163-167)
Edited by
Lijuan Li
Pages
1419-1424
DOI
10.4028/www.scientific.net/AMR.163-167.1419
Citation
Y. L. Wang, W. D. Wang, X. M. Guan, "Physical Filling Effects of Limestone Powders with Different Particle Size", Advanced Materials Research, Vols. 163-167, pp. 1419-1424, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jun Zhao, Gao Chuang Cai, Dan Ying Gao
Abstract:The binding properties of chloride ion of sulphoaluminate cement and portland cement were studied in different age,different water-cement...
698
Authors: Bao Lin Zhu, Xin Huang, Ye Guo
Abstract:On the basis of the principle for the highest filling degree of cement hydrates, it is synthetically considered that a matching connection...
118
Authors: Guang Ri Luan, Lian Jun Wang, Yi Li
Chapter 1: Road and Railway Engineering
Abstract:In this paper, the influence of compound mineral admixture on cement mortar’s performance is studied. The optimum compound proportion of...
373
Authors: Yan Kun Zhang, Er Yan Chen, Zhen Lei Guo
Chapter 2: Advanced Construction Materials
Abstract:From the experimental research, the cube compressive strength and prism compressive strength of combined aggregate concrete are compared....
413
Authors: Mei Li Zhao
Chapter 1: Traditional Construction Materials
Abstract:Mineral admixture was one or more industrial waste, or mixed with finely ground natural minerals, or grinded mixture.By replacing part of the...
263