Paper Title:
Experimental Investigation on Shear Behavior Of GFRP-Concrete Hybrid Beams
  Abstract

The present study describes an experimental investigation on shear behavior of GFRP-concrete hybrid beams, consisting of reinforced concrete beams combined with U-shaped glass fiber reinforced polymer pultruded profile constructed as combined tensile reinforcement, permanent formwork and corrosion resistance. A total of six beams were tested, three served as control beams and the remaining were implemented with U-shaped GFRP composites. Test results show that hybrid beam provides significant increase in shear capacity when compared to control RC beam.

  Info
Periodical
Advanced Materials Research (Volumes 163-167)
Edited by
Lijuan Li
Pages
3433-3439
DOI
10.4028/www.scientific.net/AMR.163-167.3433
Citation
F. Zhao, P. Feng, C. H. Chen, W. J. Lou, "Experimental Investigation on Shear Behavior Of GFRP-Concrete Hybrid Beams", Advanced Materials Research, Vols. 163-167, pp. 3433-3439, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Wen Hui Bai, Bin Xiang Sun
Abstract:In order to investigate flexural behavior of simply-supported beam using recycled coarse aggregate concrete, the difference of the component...
543
Authors: Wen Hui Bai
Abstract:This paper mainly studies the deflection under short-term loading of recycled course aggregate reinforced concrete beam is calculated by...
1443
Authors: Chun Sheng Wang, Lan Duan, Ming Wei, Li Xiang Liu, Jing Yu Hu
Abstract:This paper investigates the flexural strength and ductility of hybrid high performance steel (HPS) I-beams. Three simple supported I-beams...
492
Authors: Jing Feng Wang, Bo Wang, Zhong Ming Zheng
Chapter 9: New Technology for the Preparation and Construction of Building Materials
Abstract:To research the mechanical behaviour of the novel composite beam with concrete filled steel tubular (CFST) truss, an experimental study of...
1680