Paper Title:
Mechanism of High-strength Concrete Damage Evolution Based on CT Observation
  Abstract

To study damage evolution of high-strength concrete under the frozen environment, based on the background of YunCheng auxiliary shaft engineering, this paper studies the damage pattern of C100 concrete under loading by applying the method of industry CT scanning. It aims at showing the evolution process of concrete damage by contrasting of the damage factor on standard curing and negative temperature curing condition, which analyzes the trend of damage modulus of elasticity of C100 high-strength concrete uniaxial compression conditioned from the micro level, combining change of fractal dimension of concrete. The results showed that the change of fractal dimension can reflect the evolution trend of inner damage of concrete, fractal dimension is related with the size of concrete when it damaged. Negative temperature frozen brings about the increase of inner hole of high-strength concrete and decrease of modulus of elasticity, and the ratio of damage energy release rate and strain energy release rate decrease, the energy needed by concrete damage is very low. Moreover, the nonlinear positive correlation between fractal dimension and damage factor of high-strength concrete has been gained.

  Info
Periodical
Advanced Materials Research (Volumes 168-170)
Edited by
Lijuan Li
Pages
498-504
DOI
10.4028/www.scientific.net/AMR.168-170.498
Citation
H. Zhang, R. S. Yang, L. Zhao, H. Cao, "Mechanism of High-strength Concrete Damage Evolution Based on CT Observation", Advanced Materials Research, Vols. 168-170, pp. 498-504, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Xing Guo Wang, Zhao Xia Cheng, Yongchao Hao, Yi Xin Wang
Abstract:Mixing three different fiber composites into concrete specimens respectively, compressive strength, splitting tensile strength and flexural...
1976
Authors: Yu Zhuo Sun, An Hai Yi, Jie Lin, Peng Qiao
Chapter 4: Structural Engineering
Abstract:The relation of tensile strength & temperature stress and concrete fissure was researched firstly , then it showed the causes of late cracks...
1056
Authors: Ke Liu, Yan Ming Wang, Wen Wen Yang, Yong Sun
Chapter 1: Advanced Materials Science
Abstract:The fiber reinforced concrete with flexible fiber and rigid fiber respectively added into C30 plain concrete, curing under standard condition...
619
Authors: Ning Hui Liang, Xin Rong Liu, Ji Sun
Chapter 2: Advanced Building Materials
Abstract:Through compression tests on 30 plain concrete and polypropylene fiber concrete specimens with the dimensions of 100mm × 100mm × 100mm ,...
1584
Authors: Xiao Qing Nie, Hong Xiu Du, Rui Zhen Yan
Chapter 4: Building Materials and Processing Technology
Abstract:After 51 C40 HPC specimens with a size of 100mm×100mm×400mm were heated to 400°C, 600°C, 700°C, 800°C for 2 hours, and 300°C and 500°C for...
345