Paper Title:
Lateral and Local Stability of Steel-Concrete Composite Beam
  Abstract

Lateral buckling and local buckling are two important influential factors for bearing capacity of a steel-concrete composite beam. The existing codes of a steel-concrete composite beam generally use steel structure design methods to calculate stability of a composite beam, and the results do not agree with the fact. This paper analyses global lateral buckling forms of I shape steel concrete composite beam and a calculation model of I shape composite beam stability analysis is presented. The critical moment of lateral buckling of the composite beam compressive bottom flange in the hogging bending moment region is derived in accordance with computation module. The author also studies the mechanical property of the steel web under combined action of bending stress, axial compressive stress and shear stress in the hogging bending moment region. In the light of correlation equation under combined eccentric compression and shear force, an elastic buckling factor of the steel web in complicated stress state is obtained. Based on buckling analysis results, a height to thickness ratio of steel beam in the elastic strained stage without transverse stiffening rib is proposed. Compared with existing stability theory and calculation method of I shape composite beam, correction methods and advices of stability design for I shape composite beam in the hogging bending moment region are presented.

  Info
Periodical
Advanced Materials Research (Volumes 168-170)
Edited by
Lijuan Li
Pages
721-729
DOI
10.4028/www.scientific.net/AMR.168-170.721
Citation
L. Z. Jiang, J. J. Qi, W. B. Zhou, X. Li, "Lateral and Local Stability of Steel-Concrete Composite Beam", Advanced Materials Research, Vols. 168-170, pp. 721-729, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Wen Hui Bai
Abstract:This paper mainly studies the deflection under short-term loading of recycled course aggregate reinforced concrete beam is calculated by...
1443
Authors: Chun Sheng Wang, Lan Duan, Ming Wei, Li Xiang Liu, Jing Yu Hu
Abstract:This paper investigates the flexural strength and ductility of hybrid high performance steel (HPS) I-beams. Three simple supported I-beams...
492
Authors: Qiong Fen Wang, Yuan Cai Liu, Liang Cao, Ji Yao, Jian Feng Huang
Dynamic Mechanical Analysis, Optimization and Control
Abstract:Calculations of the end-plate semi-rigid joints are carried out with a FE-program ANSYS. Some results of the calculations are introduced in...
1625
Authors: Guo Feng Du, Chao Ma, Cheng Xiang Xu
Chapter 1: High Strength High Performance Materials and New Structural System
Abstract:In order to understand the mechanical performance and related tectonic design requirements of the concrete-filled steel tubular joints with...
183
Authors: Jing Feng Wang, Bo Wang, Zhong Ming Zheng
Chapter 9: New Technology for the Preparation and Construction of Building Materials
Abstract:To research the mechanical behaviour of the novel composite beam with concrete filled steel tubular (CFST) truss, an experimental study of...
1680