Paper Title:
The Mechanism of Explosive Spalling and Measures to Resistant Spalling of Concrete Exposed to High Temperature by Incorporating Fibers: A Review
  Abstract

Many experimental researches have been conducted on explosive spalling performance of concrete of high-strength / high performance concrete (HSC/HPC). This paper summarizes two main explosive spalling mechanisms (Vapor pressure build-up mechanism and Thermal stress mechanism) of concrete at elevated temperature, and also presents the measures to resistant the explosive spalling, i.e. by incorporating fibers (polypropylene fiber(PPF), steel fiber(SF) and hybrid fiber of the first two). Finally, the further studies of both the mechanism and the measures are proposed. Also, the preliminary study of ultra high-strength concrete (UHSC) on fire-resistance are mentioned.

  Info
Periodical
Advanced Materials Research (Volumes 168-170)
Edited by
Lijuan Li
Pages
773-777
DOI
10.4028/www.scientific.net/AMR.168-170.773
Citation
J. Yang, G. F. Peng, "The Mechanism of Explosive Spalling and Measures to Resistant Spalling of Concrete Exposed to High Temperature by Incorporating Fibers: A Review", Advanced Materials Research, Vols. 168-170, pp. 773-777, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ming Kun Yew, Othman Ismail
Abstract:The mechanical properties of hybrid nylon-steel-fiber-reinforced concrete were investigated in comparison to that of the...
1704
Authors: Xiao Fan Liu, Guo Dong Mei, Ji Xiang Li, Yun Xia Lun
Abstract:Orthogonal tests are designed for hybrid fiber reinforced concrete. Bending toughness of hybrid fiber reinforced concrete, with the substrate...
2006
Authors: Ning Hui Liang, Xin Rong Liu, Ji Sun
Chapter 2: Advanced Building Materials
Abstract:Through compression tests on 30 plain concrete and polypropylene fiber concrete specimens with the dimensions of 100mm × 100mm × 100mm ,...
1584
Authors: Xiao Qing Nie, Hong Xiu Du, Rui Zhen Yan
Chapter 4: Building Materials and Processing Technology
Abstract:After 51 C40 HPC specimens with a size of 100mm×100mm×400mm were heated to 400°C, 600°C, 700°C, 800°C for 2 hours, and 300°C and 500°C for...
345
Authors: Jan Fořt, Anton Trník, David Čítek, Zbyšek Pavlík
Chapter 1: Concrete in Severe Conditions
Abstract:The effect of high temperature load on mechanical properties and porosity of a newly designed Ultra High Performance Fiber Reinforced...
52