Paper Title:
Self-Adaptive Weighting Text Association Categorization Algorithm Research
  Abstract

In text association classification research, feature distribution of the training sample collection impacts greatly on the classification results, even with a same classification algorithm classification results will have obvious differences using different sample collections. In order to solve the problem, the stability of association classification is improved by the weighing method in the paper, the design realizes the association classification algorithms (WARC) based on rule weight. In the WARC algorithm, this paper proposes the concept of classification rule intensity and gives the concrete formula. Using rule intensity defines the rule adjustment factors that adjust uneven classification rules. Experimental results show the accuracy of text classification can be improved obviously by self-adaptive weighting.

  Info
Periodical
Advanced Materials Research (Volumes 171-172)
Edited by
Zhihua Xu, Gang Shen and Sally Lin
Pages
246-251
DOI
10.4028/www.scientific.net/AMR.171-172.246
Citation
L. J. Li, B. Zhang, Y. Y. Che, M. Yang, T. N. Li, "Self-Adaptive Weighting Text Association Categorization Algorithm Research", Advanced Materials Research, Vols. 171-172, pp. 246-251, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Lu Na Byon, Jeong Hye Han
Abstract:As electronic commerce progresses, temporal association rules are developed by time to offer personalized services for customer’s interests....
287
Authors: Hai Feng Li, Ning Zhang
Chapter 1: Transportation & Service Science
Abstract:Maximal frequent itemsets are one of several condensed representations of frequent itemsets, which store most of the information contained in...
21
Authors: Dong Wang, Shi Huan Xiong
Chapter 8: Nanomaterials and Nanomanufacturing
Abstract:The learning sequence is an important factor of affecting the study effect about incremental Bayesian classifier. Reasonable learning...
1455
Authors: Jun Tan
Chapter 12: Computer-Aided Design and Applications in Industry and Civil Engineering
Abstract:Online mining of frequent closed itemsets over streaming data is one of the most important issues in mining data streams. In this paper, we...
2910