Paper Title:
Research and Application of Wavelet Neural Networks of Particle Swarm Optimization Algorithm in the Performance Prediction of Centrifugal Compressor
  Abstract

The traditional method of centrifugal compressor performance prediction is usually the BP neural network, however, the problems are that prediction accuracy is not high enough, convergence is slow and it is apt to fall into local optimal solution. In order to predict the performance of centrifugal compressors more accurately and identify the implicit problems in advance, now we combine the particle swarm optimization, wavelet theory and neural networks, to establish performance prediction model of centrifugal compressor based on wavelet neural network of PSO. First, set the various parameters of wavelet neural network as the particle position vector X and the energy function of mean square error as the optimized objective function. By particle swarm optimization algorithm to iterate the basic formula to obtain the corresponding WNN coefficient and then use back-propagation algorithm to train WNN to approach any nonlinear function. Simulation results show that application of the prediction model can achieve the accurate prediction of performance and monitoring of centrifugal compressor. The prediction model has the advantages of simple algorithm, stable structure, fast calculation of convergence speed and strong generalization ability with a prediction accuracy of 99%, 13% higher than prediction accuracy of traditional methods, which has a certain theoretical research value and practical value.

  Info
Periodical
Edited by
Yanwen Wu
Pages
271-276
DOI
10.4028/www.scientific.net/AMR.187.271
Citation
S. Z. Huang, "Research and Application of Wavelet Neural Networks of Particle Swarm Optimization Algorithm in the Performance Prediction of Centrifugal Compressor", Advanced Materials Research, Vol. 187, pp. 271-276, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jun Zhang, Kan Yu Zhang
Chapter 19: Modeling, Analysis, and Simulation of Manufacturing Processes II
Abstract:Good dynamic performance of a system have great significance in the traditional sense, furthermore,it is more important at the point of...
4768
Authors: Hui Qin Sun, Zhi Hong Xue, Ke Jun Sun, Su Zhi Wang, Yun Du
Chapter 2: Manufacturing Technology
Abstract:BP neural network is currently the most widely used of neural network models in practical application in transformer fault diagnosis. BP...
789
Authors: Na Rui Bu, Run Shan Bai, Zhang Zhen Li, De Zhong Lin
Chapter 6: Vibration, Noise Analysis and Control
Abstract:Analysis of slope stability based on BP neural network, the analytical model of slope stability is built. Aiming at the defects that BP...
1263
Authors: Da Wang, Hong Yu Bian
Chapter 1: Mechatronics
Abstract:In order to further improve the accuracy of the sonar image registration, a novel hybrid algorithm was proposed. It proposed the normalized...
1811
Authors: Jian Xue Chen, Shui Yu
Chapter 4: Mechatronics and Automation Manufacturing Systems, Control Technologies
Abstract:Combining ant colony optimization (ACO) algorithm with back-propagation (BP) algorithm, the ACO-BP algorithm is proposed to optimize shift...
553