Paper Title:
Research on the Topography Features of the Densely Bonded Diamond Grinding Wheel Dressed by Elliptical Ultrasonic Vibration
  Abstract

In this paper, on the influence of different dressing methods, such as elliptical ultrasonic vibration, on the grinding wheel bonded delta, the morphology of abrasive grains of wheel, the protrusion height and the grinding wheel topography was studied by experiment. The experiment shows that the abrasive grains of grinding wheel surface dressed by elliptical ultrasonic vibration are great in protrusion height and trench depth, and the bonded delta grain after grinding is narrow, short, and irregular with significant reduced semi-surrounded area compared with by ordinary dressing method. The abrasive grains of metal-bonded diamond grinding wheel surface dressed by elliptical ultrasonic vibration are basically intact, and due to the high-speed collision between abrasive grains, local micro-break is easy to occur on the abrasive grains to form multiple micro-cutting edges. The abrasive grains of grinding wheel surface dressed by ordinary dressing method are fractured and broken, while that of resin-bonded grinding wheel surface have a high ratio to be loose and shedding. For the metal or resin-bonded grinding wheel surface dressed by elliptical ultrasonic vibration, its material removal mechanism may primarily be the removal of bonding ductility and the fine-crushing of abrasive grains; for the metal-bonded grinding wheel surface dressed by ordinary method, its material removal mechanism may primarily be the fracture and break of abrasive grains, secondly be the fracture of bonding agent; and for the resin-bonded grinding wheel surface, its material removal mechanism may mainly be the looseness and shedding of abrasive grains caused by the fracture of bonding agent, secondly be the fracture of abrasive grains. Compared with ordinary dressing method, elliptical ultrasonic vibration dressed abrasive grains are dense at shaft and sparse in periphery, with a large quantity of static effective abrasive grains, great protrusion height and an excellent nature of contour.

  Info
Periodical
Edited by
Chengyong Wang, Ning He, Ming Chen and Chuanzhen Huang
Pages
330-335
DOI
10.4028/www.scientific.net/AMR.188.330
Citation
B. Zhao, C.Y. Zhao, G.F. Gao, "Research on the Topography Features of the Densely Bonded Diamond Grinding Wheel Dressed by Elliptical Ultrasonic Vibration", Advanced Materials Research, Vol. 188, pp. 330-335, 2011
Online since
March 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hiroshi Matsuura, Yasuhiro Kunieda, Nobuhito Yoshihara, Ji Wang Yan, Tsunemoto Kuriyagawa
Abstract:A completely new diamond wheel, named the 3R wheel, has been developed. The 3R wheel has three unprecedented functions, reconfiguration,...
459
Authors: Li Li, Dong Wang, Zong Wei Niu, Zhi Yong Li, Guang Ming Yuan
Abstract:A new kind of ultrasonic machining method named ultrasonic machining aided tool rotation is proposed for sintered NdFeB permanent magnet. In...
420
Authors: Jing Lin Tong, Bo Zhao, Yan Yan Yan
Abstract:Experimental research on grinding characteristics of nano-composites ceramics were carried out using diamond wheel in two-dimensional...
614
Authors: Yuya Kawana, Rei Sekiguchi, Yuta Mizumoto, Yasuhiro Kakinuma, Katsutoshi Tanaka, Masahiko Fukuta
Chapter 6: Brittle Material Machining
Abstract:Large aperture lenses with high surface quality are demanded for professional imaging products such as single-lens reflex cameras and...
241